首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but longer-term reduction in forest carbon stocks. Export of wood pellets to EU markets does not greatly affect the total life cycle GHG emissions of wood pellets. However, pellet exporting countries risk creating a considerable GHG emissions burden, as they are responsible for AFOLU and bioenergy production emissions but do not receive credit for pellets displacing fossil fuel-related GHG emissions. Countries producing bioenergy from forest biomass, whether for domestic use or for export, should carefully consider potential implications of alternate forest carbon accounting methods to ensure that potential bioenergy pathways can contribute to GHG emissions reduction targets.  相似文献   

2.
Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the United States and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, we review the issues involved in MERV activities. We identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency and the persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (6) reporting by multiple project participants; (7) verification of GHG reduction credits; (8) uncertainty and risk; (9) institutional capacity in conducting MERV; and (10) the cost of MERV.  相似文献   

3.
Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop production. The surplus area could be used for energy production without affecting the land use necessary for food and feed production. We built a model to investigate the effect of changing nitrogen (N) fertilizer rates on cropping area required for a given amount of crops. We found that an increase in nitrogen fertilizer supply is only justified if GHG mitigation with additional land is higher than 9–15 t carbon dioxide equivalents per hectare (CO2-eq../ha). The mitigation potential of bioenergy production from energy crops is most often not in this range. Hence, from a GHG abatement point of view land should rather be used to produce crops at moderate fertilizer rate than to produce energy crops. This may change if farmers are forced to reduce their N input due to taxes or governmental regulations as it is the case in Denmark. However, with a fertilizer rate 10 % below the economical optimum a reduction of N input is still more effective than the production of bioenergy unless mitigation effect of the bioenergy production exceeds 7 t carbon dioxide (CO2)-eq../ha. An intensification of land use in terms of N supply to provide more land for bioenergy production can only in exceptional cases be justified to mitigate GHG emissions with bioenergy under current frame conditions in Germany and Denmark.  相似文献   

4.
This paper analyses the eligibility of different types of biomass energy projects in developing countries for funding under the Kyoto Protocol's Clean Development Mechanism and related funds. Specifically, GHG emission reductions through the replacement of non-renewable types of biomass with renewable energy, or the improvement of the efficiency of energy systems based on non-renewable biomass, is discussed in more detail, as it is currently difficult if not impossible for these to qualify as CDM projects under current rules. These problems are caused by the categorical exclusion of land-use from the CDM (with the exception of afforestation and reforestation projects). The paper offers some possible solutions for both small-scale and large-scale CDM projects. These limitations hold for a number of carbon funds. The paper covers of the major funds operated by the World Bank and that are already operational, to point out differences between existing funds in order to identify the best opportunities for different biomass sources and technologies. This systematic, comparative analysis covers the characteristics of the different funds in terms of eligible technologies, geographical foci, and size (targets and completed and ongoing transactions, CO2 equivalents, project asset values). To provide the context for the analysis of the carbon funds, the regulatory drivers and frameworks influencing the demand side of the market are discussed. This first of its kind analysis for the specifics of the carbon market regarding bioenergy enables decision makers and project managers active or planning to become active in the area, to identify and target the most promising funds for their specific purposes.  相似文献   

5.
Full accounting of the greenhouse gas budget in the forestry of China   总被引:1,自引:0,他引:1  
Forest management to increase carbon (C) sinks and reduce C emissions and forest resource utilization to store C and substitute for fossil fuel have been identified as attractive mitigation strategies. However, the greenhouse gas (GHG) budget of carbon pools and sinks in China are not fully understood, and the forestry net C sink must be determined. The objective of this study was to analyze potential forest management mitigation strategies by evaluating the GHG emissions from forest management and resource utilization and clarify the forestry net C sink, and its driving factors in China via constructing C accounting and net mitigation of forestry methodology. The results indicated that the GHG emissions under forest management and resource utilization were 17.7 Tg Ce/year and offset 8.5% of biomass and products C sink and GHG mitigation from substitution effects from 2000 to 2014, resulting in a net C sink of 189.8 Tg Ce/year. Forest resource utilization contributed the most to the national forestry GHG emissions, whereas the main driving factor underlying regional GHG emissions varied. Afforestation dominated the GHG emissions in the southwest and northwest, whereas resource utilization contributed the most to GHG emissions in the north, northeast, east, and south. Furthermore, decreased wood production, improved product use efficiency, and forests developed for bioenergy represented important mitigation strategies and should be targeted implementation in different regions. Our study provided a forestry C accounting in China and indicated that simulations of these activities could provide novel insights for mitigation strategies and have implications for forest management in other countries.  相似文献   

6.
Many proposed activities formitigating global warming in the land-use change and forestry(LUCF) sector differ from measures to avoid fossilfuel emissions because carbon (C) may be held out ofthe atmosphere only temporarily. In addition, thetiming of the effects is usually different. Many LUCFactivities alter C fluxes to and from the atmosphereseveral decades into the future, whereas fossil fuelemissions avoidance has immediate effects. Non-CO2 greenhouse gases (GHGs), which are animportant part of emissions from deforestation inlow-latitude regions, also pose complications forcomparisons between fossil fuel and LUCF, since themechanism generally used to compare these gases(global warming potentials) assumes simultaneousemissions. A common numeraire is needed to expressglobal warming mitigation benefits of different kindsof projects, such as fossil fuel emissions reduction,C sequestration in forest plantations, avoideddeforestation by creating protected areas and throughpolicy changes to slow rates of land-use changes suchas clearing. Megagram (Mg)-year (also known as`ton-year') accounting provides a mechanism forexpressing the benefits of activities such as these ona consistent basis. One can calculate the atmosphericload of each GHG that will be present in each year,expressed as C in the form of CO2 and itsinstantaneous impact equivalent contributed by othergases. The atmospheric load of CO2-equivalent Cpresent over a time horizon is a possible indicator ofthe climatic impact of the emission that placed thisload in the atmosphere. Conversely, this index alsoprovides a measure of the benefit of notproducing the emission. One accounting methodcompares sequestered CO2 in trees with theCO2 that would be in the atmosphere had thesequestration project not been undertaken, whileanother method (used in this paper) compares theatmospheric load of C (or equivalent in non-CO2GHGs) in both project and no-project scenarios.Time preference, expressed by means of a discount rateon C, can be applied to Mg-year equivalencecalculations to allow societal decisions regarding thevalue of time to be integrated into the system forcalculating global warming impacts and benefits. Giving a high value to time, either by raising thediscount rate or by shortening the time horizon,increases the value attributed to temporarysequestration (such as many forest plantationprojects). A high value for time also favorsmitigation measures that have rapid effects (such asslowing deforestation rates) as compared to measuresthat only affect emissions years in the future (suchas creating protected areas in countries with largeareas of remaining forest). Decisions on temporalissues will guide mitigation efforts towards optionsthat may or may not be desirable on the basis ofsocial and environmental effects in spheres other thanglobal warming. How sustainable development criteriaare incorporated into the approval and creditingsystems for activities under the Kyoto Protocol willdetermine the overall environmental and social impactsof pending decisions on temporal issues.  相似文献   

7.
水利工程在社会发展过程中起到的作用日益明显。在建设水利工程的时候,不仅要在开工前对其相关影响因素进行分析,更要考虑工程项目建设完成后对河流生态系统的影响,以保障周边环境资源的可持续发展。在进行工程建设时要遵守环保原则。根据当地的实情,在保障工程安全的基础上既要提高经济收益,还要注重环境保护的问题。因此基于环保角度提出HSPF模型水利工程产流计算方法对工程项目进行监测评估并进行相应实验,该方法有助于推进水利工程建设项目良性发展.以达到水利工程建设项目环境影响最小化、经济和环境效益最大化目标。  相似文献   

8.
全球气候变化问题日益严重,走绿色、低碳、环保和可持续发展道路已经成为必然选择。温室气体(GHG)排放审计因其具有帮助企业摸清自身碳资产家底、提供准确的GHG排放数据、为GHG排放设定合理的减排目标等作用越来越受到各方面的重视。本文通过总结参与GHG排放审计工作的实践,详细介绍了GHG排放审计工作的程序和主要内容,并探讨了我国GHG排放审计工作存在的主要问题及解决对策。该研究对抑制全球气候变化具有重要的意义。  相似文献   

9.
Environmental impacts associated with the use of fossil fuels, rising prices, potential limitations in supply and concerns about regional and national security are driving the development and use of biomass for bioenergy, biofuels and bioproducts. However, the use of biomass does not automatically imply that its production, conversion and use are sustainable. In order to operationalize sustainability assessments of biomass systems, it is crucial to identify critical criteria, but keep their number and measurement at a manageable level. The selection of these criteria can vary depending on individual's expertise, geographical region where they work, and spatial scale they are focused on. No clear consensus has yet emerged on what experts consider as critical indicators of sustainability. Objectives of this paper were to analyze how key experts perceive the 35 sustainability criteria for bioenergy found in emerging sustainability assessment frameworks and to identify levels of agreement and uncertainty. Experts were asked to rate the criteria for attributes of relevance, practicality, reliability, and importance.Perceptions of the importance of the 35 criteria varied among the experts surveyed. Only two criteria, energy balance and greenhouse gas balance, were perceived as critical by more than half of the respondents. Social criteria and locally applied criteria were generally ranked low for all four attributes. Seven of the 12 criteria scored as most important focused on environmental issues, four were social and only one was economic. Of the 12 most important criteria, seven were ranked low in practicality and reliability indicating that mechanisms to assess a number of important criteria need to be developed. The spatial scale the experts worked at and their profession explained most of the differences in importance ranking between experts, while regional focus had minimal effect. Criteria that were ranked low for importance, were characterized by a lack of consensus, suggesting the need for further debate regarding their inclusion in sustainability assessments.Outcomes of the survey provide a foundation for further discussions and development of sustainability assessments for bioenergy systems and may also provide a basis for assessing individual bioenergy projects within their specific geographic, ecological, societal, and technological context and scale.  相似文献   

10.
There is evidence that the replacement of carbon-intensive products with bio-based substitutes (‘material substitution with biomass’) can be highly efficient in reducing greenhouse gas (GHG) emissions. Based on two case studies (CS1/2) for Austria, potential benefits of material substitution in comparison to fuel substitution are analysed. GHG savings are calculated according to default IPCC approaches (Tier 2 method assuming first-order decay) and with more realistic approaches based on distribution functions. In CS1, high savings are achieved by using wood residues for the production of insulating boards instead of energy. The superiority of material substitution is due to the establishment of a long-term carbon storage, the high emission factor of wood in comparison to natural gas and higher efficiencies of gas-fired facilities.The biomass feedstock in CS2 is lignocellulosic ethanol being used for bio-ethylene production (material substitution) or replacing gasoline (fuel substitution). GHG savings are mainly due to lower production emissions of bio-ethylene in comparison to conventional ethylene and significantly lower than in CS1 (per unit of biomass consumed). While CS1 is highly robust to parameter variation, the long-term projections in CS2 are quite speculative.To create adequate incentives for including material substitution in national climate strategies, shortcomings of current default accounting methods must be addressed. Under current methods the GHG savings in both case studies would not (fully) materialize in the national GHG inventory. The main reason is that accounting of wood products is confined to the proportion derived from domestic harvest, whereas imported biomass used for energy is treated as carbon-neutral. Further inadequacies of IPCC default accounting methods include the assumption of exponential decay and the disregard of advanced bio-based products.  相似文献   

11.
The agricultural sector and primarily its cotton subsector are of great importance for Greece, due to the intensive agricultural activities. The wastes from cotton ginning plants are also considerable and can be valorized for bioenergy production. The substitution of conventional by green fuels, which can be produced from cotton ginning wastes, is a step towards: (a) economic and environmental sustainability for the textile industry and (b) the development of alternative energy supplies, contributing to the reduction of GHG emissions. Furthermore, it consists an especially attractive opportunity to invest in rural areas. The present paper concerns the feasibility study for energy recovery from cotton ginning waste with GHG emissions reduction in a textile plant located in Northern Greece. The aim was to replace part of heavy fuel oil used for the thermal needs of the plant by biomass. The results showed that the most economically interesting energy option for a bioenergy unit in the above textile plant is 5 MW for the coverage of the 52% of the plant's thermal requirements.  相似文献   

12.
随着温室气体减排和低碳发展的要求,生物质炭作为农业固碳的新型技术引起人们的关注。固碳潜力评价和经济效益分析是生物质炭规模化开发利用的基础。论文利用“生物质资源—固碳潜力—经济效益”集成评估方法,以山西省为研究区域,估算了农业生物质的固碳潜力和经济效益。结果显示:山西省3种生物质资源(农作物秸秆、禽畜粪便和作物加工副产品)的固碳总潜力为1 228.10×104 t CO2当量,约占2014年山西省全年碳排放总量的2.5%。在2014年碳均价和碳高价情形下,农作物秸秆和作物加工副产品实现了正效益,每t原料综合效益分别为8.09和21.79元。全年3种生物质炭固碳综合效益为0.44×108~2.80×108元,证实了山西省生物质固碳技术的经济可行性。  相似文献   

13.
Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon storage. Significant carbon benefit can be obtained in the long run from using lands for growing short rotation energy crops and substituting fossil fuels by the biomass thus produced, as opposed to sequestering carbon in the biomass of the trees. When growth rates are high and harvest is used in a sustainable manner (i.e., replanting after every harvest), the opportunities for net carbon reductions appear to be fossil fuel substitution, rather than storage in ecosystem biomass. Our results suggest that at year 100 a total of 216 Mg C ha−1 is sequestered for afforestation/reforestation using long rotation sal (Shorea robusta Gaertn.f) species, as opposed to offset of 412 Mg C ha−1 for carbon storage and fossil fuel substitution for short rotation poplar (Populus Deltoides Marsh) plantations. The bioenergy option results in a continuous stream of about 3 Mg C ha−1 yr−1 of carbon benefits per year on forest land and 4 Mg C ha−1 yr−1 on non-forest land. Earlier studies have shown that in India waste land availability for establishing energy plantations is in the range of 9.6 to 36.5 Mha. Thus, using the 758 Tg biomass per year generated from 9.6 Mha waste land gives a mitigation potential in the range of 227 to 303 Tg C per year for carbon storage and fossil fuel substitution from poplar plantation for substituting coal based power generation. Depending upon the land availability for plantation, the potential for energy generation is in the range of 11,370 PJ, possibly amounting to a bioenergy supply of 43% of the total projected energy consumption in 2015. Further studies are needed to estimate the mitigation potential of other species with different productivities for overall estimation of the economic feasibility and social acceptability in a tropical country like India.  相似文献   

14.
Demand for new environmental services from forests requires improved monitoring of these services at three scales: project-, regional-, and national-level. Most forest management activities are organized at the project scale, while the Framework Convention on Climate Change (FCCC) recognizes the nation as the party to the agreement. Hence, measurement and monitoring issues are emerging at the intersections of the project and national scales, referred to here as monitoring-domain edge effects. The following actions are necessary to improve existing monitoring capabilities and to help resolve project/national edge effects: (1) consensus on standard methods and protocols for monitoring mitigation activities, their off-site greenhouse gas (GHG) impacts, the fate of forest products and their relation to national GHG inventories (baselines); (2) a global program for collecting land use, land cover, biomass burning, and other data essential for national baselines; (3) the development of new nested-monitoring-domain methods that allow projects to be identified in national GHG inventories (baselines), and permit tracking of leakage of GHGs and wood product flows outside project boundary and over time; and (4) presentation of a set of credible, carefully designed, and well-documented forest mitigation activities that resolve most of the current issues.  相似文献   

15.
准确评估种养一体化奶牛场的经济性能与环境绩效,是相关支持政策制定的基础,也是促进奶业低碳生产的关键.本文基于生命周期视角,对非种养一体化奶牛场(non-IPBS)和种养一体化奶牛场(IPBS)养殖过程中的温室气体排放、能源消耗、水消耗、土地占用等环境成本和经济效益进行评估.结果表明,non-IPBS生产1t标准牛奶(FPCM)的净收益为1427元,而IPBS的实际净收益提高7%,如果青贮玉米自给率从当前的32%提升到100%,则实际净收益将提高19%,同时,该净收益的提高率取决于耕地流转费用,临界点为14695元/hm2;相比non-IPBS,IPBS生产1tFPCM的温室气体排放、能源消耗、水消耗、土地占用分别减少6%、6%、5%、7%,如果青贮玉米自给率提升到100%,则相应减少16%、16%、11%、14%.IPBS在降低青贮玉米种植的化肥施用、解决养殖场粪便污染等方面优势明显,在提升养殖经济效益、降低温室气体排放等方面具有巨大潜力,值得推广.  相似文献   

16.
该文结合当前的国家政策和电力行业深度挖潜、灵活性改造的发展需求,针对当前某电厂所在区域的供热现状进行了简要说明,对该电厂三缸三排汽200 MW汽轮机低压缸光轴改造原理进行了说明;结合改造经验,对机组经济性指标、节能量情况进行了测算,对项目的供热收益和灵活性收益进行了总结,对项目的环保效益进行了计算,说明光轴供热改造项目不仅具有良好的经济效益,还具有节能和环保的社会效益,更会对企业的可持续发展产生积极影响和促进作用.  相似文献   

17.
A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we explore the constraints and barriers to implementation important for GHG mitigation in agriculture. We also examine how climate and non-climate policy in different regions of the world has affected agricultural GHG emissions in the recent past, and how it may affect emissions and mitigation implementation in the future. We examine the links between mitigation and adaptation and drives for sustainable development and the potential for agricultural GHG mitigation in the future.We describe how some countries have initiated climate and non-climate policies believed to have direct effects or synergistic effects on mitigating GHG emissions from agriculture. Global sharing of innovative technologies for efficient use of land resources and agricultural chemicals, to eliminate poverty and malnutrition, will significantly mitigate GHG emissions from agriculture.Previous studies have shown that as less than 30% of the total biophysical potential for agricultural GHG mitigation might be achieved by 2030, due to price- and non-price-related barriers to implementation. The challenge for successful agricultural GHG mitigation will be to remove these barriers by implementing creative policies. Identifying policies that provide benefits for climate, as well as for aspects of economic, social and environmental sustainability, will be critical for ensuring that effective GHG mitigation options are widely implemented in the future.  相似文献   

18.
This paper introduces a new approach for conducting project feasibility study by embracing the principles of sustainable development. Construction projects, in particular, infrastructures have major influence on the attainment of sustainable development, thus project sustainability needs to be considered. This becomes a pressing issue particularly in those developing countries or regions, such as China where a huge amount of construction works are currently performed and remain to happen in the future. Previous study has addressed little on the relevance of project feasibility study to project sustainability performance. The importance of incorporating sustainable development principles in conducting project feasibility study is not effectively understood by project stakeholders. This paper addresses major challenges of undertaking project feasibility study in line with sustainable construction practice with reference to the Chinese construction industry. A case study approach is the major research method in this study. The research team collected 87 feasibility study reports from various projects. Attributes are used for measuring project performance, including 18 economic performance attributes, nine social performance attributes, and eight environmental performance attributes. Research results show that economic performance is given the most concern in the current practice of project feasibility study, whilst less attention is given to the social and environmental performance. The study reveals the insufficiency of examining the performance of implementing a construction project from the perspective of sustainable development. The results also suggest the need for shifting the traditional approach of project feasibility study to a new approach that embraces the principles of sustainable development.  相似文献   

19.
Economic incentives for sequestering atmospheric carbon dioxide (CO2) in forests may be an effective way to meet greenhouse gas (GHG) reduction commitments under the Kyoto Protocol (KP). But concerns have been raised that the KP may create unintended incentives to excessively harvest existing forests if regenerated forests qualify for carbon (C) credits under the reforestation provision of Article 3.3. This paper combines an analytical model of the optimal forest rotation with both timber and C as priced outputs with data on timber and C growth and yield to different forest settings in the U.S. C prices of $50 per megagram (Mg) – the highest price evaluated– can considerably lengthen forest rotations (40 years or more), raise forest land values (as much as $1,900 per hectare), and sequester more C in the long run (up to 60 percent per acre), relative to the base case of no C compensation. However, if C payments are made for the regenerated stand only, in some situations, it is optimal to immediately harvest an otherwise premature stand at C prices as low as $20/Mg. The strength of perverse incentives to accelerate harvesting of existing forest varies by forest type, region, C price level, and institutional factors relevant to the compensation system. If C compensation were extended to existing stands, as may be possible under Article 3.4 of the KP, the perverse incentives for prematurely harvesting existing stands would not exist.  相似文献   

20.
建立完善的、减污降碳相协同的管理制度是支撑全国碳排放高质量达峰的重要保障,有效控制新增碳排放是推动实现重点行业尽早达峰的关键. 环境影响评价是我国源头防控的基础性制度,将温室气体管控要求纳入其中是现阶段推动减污降碳协同增效的可行途径及重要抓手. 综合考虑国内外管理实践经验以及我国制度特点与管理需求,开展了温室气体环境影响评价技术方法研究. 本文提出了系统性、全过程、协同性的三大温室气体评价基本原则,识别建设项目温室气体环境影响评价的主要影响因素,构建了强调高效、低碳、循环的温室气体环境影响评价指标体系,建立了包含项目分析与判断、影响因素识别、影响预测与技术分析、综合环境影响评价的评价方法体系. 基于该方法,以山东省250万吨电解铝产能转移至云南省项目为例,开展碳排放环境影响评价分析,测算结果表明:若不考虑项目对云南省对外输电的影响,全国CO2减排量可达2 574.4×104 t;如考虑项目对跨区输电的影响,则全国CO2净减排量将减至968.3×104 t;进一步考虑技术升级、地方煤炭消费政策等因素影响,还会得到差异明显的评价结果. 研究显示,考虑不同评价目标、评价边界和影响因素可能会对全社会碳排放量环境影响评价结果产生显著影响,由此建议在开展相关评价时应立足实际需求,合理确定评价目标和边界.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号