首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

2.
The concentrations of PM2.5−10, PM2.5 and associated water-soluble inorganic species (WSIS) were determined in a coastal site of the metropolitan region of Rio de Janeiro, Southeastern Brazil, from October 1998 to September 1999 (n=50). Samples were dissolved in water and analyzed for major inorganic ions. The mean (± standard deviation; median) concentrations of PM2.5−10 and PM2.5 were, respectively, 26 (± 16; 21) μg m−3 and 17 (± 13; 14) μg m−3. Their mean concentrations were 1.7–1.8 times higher in dry season (May–October) than in rainy season (November–April). The WSIS comprised, respectively, 34% and 28% of the PM2.5−10 and PM2.5 masses. Chloride, Na+ and Mg2+ were the predominant ions in PM2.5−10, indicating a significant influence of sea-salt aerosols. In PM2.5, SO42− (∼97% nss-SO42−) and NH4+ were the most abundant ions and their equivalent concentration ratio (SO42−/NH4+ ∼1.0) suggests that they were present as (NH4)2SO4 particles. The mean concentration of (NH4)2SO4 was 3.4 μg m−3. The mean equivalent PM2.5 NO3 concentration was eight times smaller than those of SO42− and NH4+. The PM2.5 NO3 concentration in dry season was three times higher than in rainy season, probably due to reaction of NaCl (sea salt) with HNO3 as a result of higher levels of NOy during the dry season and/or reduced volatilization of NH4NO3 due to lower wintertime temperature. Chloride depletion was observed in both size ranges, although more pronouncely in PM2.5.  相似文献   

3.
Abstract

This paper presents measurements of daily sampling of fine particulate matter (PM2.5) and its major chemical components at three urban and one rural locations in North Carolina during 2002. At both urban and rural sites, the major insoluble component of PM2.5 is organic matter, and the major soluble components are sulfate (SO4 2?), ammonium (NH4 +), and nitrate (NO3 ?). NH4 + is neutralized mainly by SO4 2? rather than by NO3 ?, except in winter when SO4 2? concentration is relatively low, whereas NO3 ? concentration is high. The equivalent ratio of NH4 + to the sum of SO4 2? and NO3 ? is <1, suggesting that SO4 2?and NO3 ?are not completely neutralized by NH4 +. At both rural and urban sites, SO4 2?concentration displays a maximum in summer and a minimum in winter, whereas NO3 ?displays an opposite seasonal trend. Mass ratio of NO3 ? to SO4 2?is consistently <1 at all sites, suggesting that stationary source emissions may play an important role in PM2.5 formation in those areas. Organic carbon and elemental carbon are well correlated at three urban sites although they are poorly correlated at the agriculture site. Other than the daily samples, hourly samples were measured at one urban site. PM2.5 mass concen trations display a peak in early morning, and a second peak in late afternoon. Back trajectory analysis shows that air masses with lower PM2.5 mass content mainly originate from the marine environment or from a continental environment but with a strong subsidence from the upper troposphere. Air masses with high PM2.5 mass concentrations are largely from continental sources. Our study of fine particulate matter and its chemical composition in North Carolina provides crucial information that may be used to determine the efficacy of the new National Ambient Air Quality Standard (NAAQS) for PM fine. Moreover, the gas-to-particle conversion processes provide improved prediction of long-range transport of pollutants and air quality.  相似文献   

4.
Animal feeding operations (AFOs) produce particulate matter (PM) and gaseous pollutants. Investigation of the chemical composition of PM2.5 inside and in the local vicinity of AFOs can help to understand the impact of the AFO emissions on ambient secondary PM formation. This study was conducted on a commercial egg production farm in North Carolina. Samples of PM2.5 were collected from five stations, with one located in an egg production house and the other four located in the vicinity of the farm along four wind directions. The major ions of NH4+, Na+, K+, SO42?, Cl?, and NO3? were analyzed using ion chromatography (IC). In the house, the mostly abundant ions were SO42?, Cl?, and K+. At ambient stations, SO42?, and NH4+ were the two most abundant ions. In the house, NH4+, SO42?, and NO3? accounted for only 10% of the PM2.5 mass; at ambient locations, NH4+, SO42?, and NO3? accounted for 36–41% of the PM2.5 mass. In the house, NH4+ had small seasonal variations indicating that gas-phase NH3 was not the only major force driving its gas–particle partitioning. At the ambient stations, NH4+ had the highest concentrations in summer. In the house, K+, Na+, and Cl? were highly correlated with each other. In ambient locations, SO42? and NH4+ had a strong correlation, whereas in the house, SO42? and NH4+ had a very weak correlation. Ambient temperature and solar radiation were positively correlated with NH4+ and SO42?. This study suggests that secondary PM formation inside the animal house was not an important source of PM2.5. In the vicinity, NH3 emissions had greater impact on PM2.5 formation.
ImplicationsThe chemical composition of PM2.5 inside and in the local vicinity of AFOs showed the impact of the AFO emissions on ambient secondary PM2.5 formation, and the fate and transport of air pollutants associated with AFOs. The results may help to manage in-house animal facility air quality, and to develop regional air quality control strategies and policies, especially in animal agriculture-concentrated areas.  相似文献   

5.
This paper is Part II in a pair of papers that examines the results of the Community Multiscale Air Quality (CMAQ) model version 4.5 (v4.5) and discusses the potential explanations for the model performance characteristics seen. The focus of this paper is on fine particulate matter (PM2.5) and its chemical composition. Improvements made to the dry deposition velocity and cloud treatment in CMAQ v4.5 addressing compensating errors in 36-km simulations improved particulate sulfate (SO42−) predictions. Large overpredictions of particulate nitrate (NO3) and ammonium (NH4+) in the fall are likely due to a gross overestimation of seasonal ammonia (NH3) emissions. Carbonaceous aerosol concentrations are substantially underpredicted during the late spring and summer months, most likely due, in part, to a lack of some secondary organic aerosol (SOA) formation pathways in the model. Comparisons of CMAQ PM2.5 predictions with observed PM2.5 mass show mixed seasonal performance. Spring and summer show the best overall performance, while performance in the winter and fall is relatively poor, with significant overpredictions of total PM2.5 mass in those seasons. The model biases in PM2.5 mass cannot be explained by summing the model biases for the major inorganic ions plus carbon. Errors in the prediction of other unspeciated PM2.5 (PMOther) are largely to blame for the errors in total PM2.5 mass predictions, and efforts are underway to identify the cause of these errors.  相似文献   

6.
ABSTRACT

To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2 5 particles collected in the Sihwa area.

The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

7.
Abstract

Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. Laboratory chamber experiments provide insights into the precursors of SOA, but field data must be used to test the approaches. This study investigates primary and secondary sources of organic carbon (OC) and determines their mass contribution to particulate matter 2.5 µm or less in aerodynamic diameter (PM2.5) in Southeastern Aerosol Research and Characterization (SEARCH) network samples. Filter samples were taken during 20 24-hr periods between May and August 2005 at SEARCH sites in Atlanta, GA (JST); Birmingham, AL (BHM); Centerville, AL (CTR); and Pensacola, FL (PNS) and analyzed for organic tracers by gas chromatography-mass spectrometry. Contribution to primary OC was made using a chemical mass balance method and to secondary OC using a mass fraction method. Aerosol masses were reconstructed from the contributions of POA, SOA, elemental carbon, inorganic ions (sulfate [SO4 2?], nitrate [NO3 ?], ammonium [NH4 +]), metals, and metal oxides and compared with the measured PM2.5. From the analysis, OC contributions from seven primary sources and four secondary sources were determined. The major primary sources of carbon were from wood combustion, diesel and gasoline exhaust, and meat cooking; major secondary sources were from isoprene and monoterpenes with minor contributions from toluene and β-caryophyllene SOA. Mass concentrations at the four sites were determined using source-specific organic mass (OM)-to-OC ratios and gave values in the range of 12–42 µg m?3. Reconstructed masses at three of the sites (JST, CTR, PNS) ranged from 87 to 91% of the measured PM2.5 mass. The reconstructed mass at the BHM site exceeded the measured mass by approximately 25%. The difference between the reconstructed and measured PM2.5 mass for nonindustrial areas is consistent with not including aerosol liquid water or other sources of organic aerosol.  相似文献   

8.
Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO42-), nitrate (NO3?) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO42? concentration, but clearly overestimated PM2.5 NO3? concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3? concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3?.
Implications: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.  相似文献   

9.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   

10.
Beijing–Tianjin–Hebei region is one of the most important political, economic and cultural centers of China. The rapid development of economy in last decades has caused severe air pollution problems, which has resulted in considerable harm to local ecological environment and human health. In this study, total 671 air samples were collected from Beijing, Tianjin and Shijiazhuang (the capital city in Hebei province), one reference site and four background sites in four seasons. Particulate matters (PMs) with different sizes, elements and dissolvable ions in PMs were analyzed. Pollutant concentrations, characteristics and seasonal variations were discussed in order to describe the pollution status and the possible sources in this region. Enriched factors of K, Ca, Cr, Fe, Cu, Zn, As, Cd and Pb were all higher than 10. Concentrations of dissolvable ions were in the order of NO3, SO42–>NH4+>Cl>Ca2+, K+, Na+>Mg2+, F. NO3, SO42–, NH4+, Cl were the most important ion pollutants in the three cities which accounted for 90.3–92.3% of total 9 ion concentrations. Ion concentrations in the PMs were in the order of PM1>PM1–2.5>PM2.5–10>PM10>TSP. More than 50% of the dissolvable ions exist in PM1 and the percentage increases to 73.9–94.8% in PM2.5. Human activities should be the main sources of the metallic pollutants, among which coal combustion was identified as the primary one.  相似文献   

11.
Abstract

Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles ≤2.5 µm in aerodynamic diameter) samples (PM2.5 ), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 µm in aerodynamic diameter) samples (PM10–2.5 ). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4 2?-rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO3 ?-rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4 2?-rich and NO3 ?-rich secondary aerosols were associated with NH4 +. The SO4 2?-rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO3 ?-rich secondary aerosol (16%), SO4 2?-rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.  相似文献   

12.
Totally nine measurement campaigns for ambient particles and SO2 have been conducted during the period of 1997–2000 in Qingdao in order to understand the characteristics of the particulate matter in coastal areas of China. The mass fractions of PM2.5, PM2.5−10 and PM>10 in TSP are 49%, 25% and 26%, respectively. The size distribution of particles mass concentrations in Qingdao shows bi-modal distribution. Mass fraction percentages of water-soluble ions in PM2.5, PM2.5−10 and PM>10 decreased from 62% to 35% and 21%. In fine particles, sulfate, nitrate and ammonium, secondary formed compounds, are major components, totally accounting for 50% of PM2.5 mass concentration.The ratios of sulfate, chloride, ammonium and potassium in PM2.5 for heating versus non-heating periods are 1.34, 1.80, 1.56 and 1.44, respectively. The ratio of nitrate is 3.02 and this high ratio could be caused by reduced volatilization at lower temperature. Sulfate concentrations are higher than nitrate in PM2.5. The chemical forms of sulfate and nitrate are probably (NH4)2SO4 and NH4NO3 and chloride depletion was observed.Backward trajectory analysis reflected possible influence of air pollutant transport to Qingdao local aerosol pollution.  相似文献   

13.
Abstract

The research objective was to adapt the ultraviolet (UV)photolysis method to determine dissolved organic nitrogen (DON) in aqueous extracts of aerosol samples. DON was assumed to be the difference in total concentration of inorganic nitrogen forms before and after sample irradiation. Using a 22 factorial design the authors found that the optimal conversion of urea, amino acids (alanine, aspartic acid, glycine, and serine), and methylamine for a reactor temperature of 44 °C occurred at pH 2.0 with a 24-hr irradiance period at concentrations < µM of organic nitrogen. Different decomposition mechanisms were evident: the photolysis of amino acids and methylamine released mainly ammonium (NH4 +), but urea released a near equimolar ratio of NH4 + and nitrate (NO3 ?). The method was applied to measure DON in the extracts of aerosol samples from Tampa, FL, over a 32-day sampling period. Average dissolved inorganic (DIN) and DON concentrations in the particulate matter fraction PM10 were 78.1 ± 29.2 nmol-Nm?3and 8.3 ± 4.9 nmol-Nm?3, respectively. The ratio between DON and total dissolved nitrogen ([TDN] = DIN + DON) was 10.1 ± 5.7%, and the majority of the DON (79.1 ± 18.2%) was found in the fine particulate matter (PM2.5) fraction. The average concentrations of DIN and DON in the PM2.5 fraction were 54.4 ± 25.6 nmol-Nm?3 and 6.5 ± 4.4 nmol-Nm?3, respectively.  相似文献   

14.
ABSTRACT

Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5.

The mean concentration of ambient PM2.5 was 42.6953.68 μj.g/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4 2- (12.8-15.1%), NO3 - (8.110.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4 2- and NO3 -), and outdoor burning of agriculture wastes (13-17%).  相似文献   

15.
The annular denuder system (ADS) was used to characterize seasonal variations of acidic air pollutants in Seoul, South Korea. Fifty- four 24 h samples were collected over four seasons from October 1996 to September 1997. The annual mean concentrations of HNO3, HNO2, SO2 and NH3 in the gas phase were 1.09, 4.51, 17.3 and 4.34 μg m-3, respectively. The annual mean concentrations of PM2.5(dp≤2.5 μm in aerodynamic diameter, 50% cutoff), SO2-4, NO-3 and NH+4 in the particulate phase were 56.9, 8.70, 5.97 and 4.19 μg m-3, respectively. All chemical species monitored from this study showed statistical seasonal variations. Nitric acid (HNO3) and ammonia (NH3) exhibited substantially higher concentrations during the summer, while nitrous acid (HNO2) and sulfur dioxide(SO2) were higher during the winter. Concentrations of PM2.5, SO2-4, NO-3 and NH+4 in the particulate phase were higher during the winter months. SO2-4, NO-3 and NH+4 accounted for 26–38% of PM2.5. High correlations were found among PM2.5, SO2-4, NO-3 and NH+4. The mean H+ concentration measured only in the fall was 5.19 nmole m-3.  相似文献   

16.
In this study, fine particulate matter (PM2.5) emitted from a municipal solid waste incinerator (MSWI) was collected using dilution sampling method. Chemical compositions of the collected PM2.5 samples, including carbon content, metal elements, and water-soluble ions, were analyzed. Traditional in-stack hot sampling was simultaneously conducted to compare the influences of dilution on PM2.5 emissions and the characteristics of the bonded chemical species. The results, established by a dilution sampling method, show that PM2.5 and total particulate matter (TPM) emission factors were 61.6 ± 4.52 and 66.1 ± 5.27 g ton-waste?1, respectively. The average ratio of PM2.5/TPM is 0.93, indicating that more than 90% of PM emission from the MSWI was fine particulate. The major chemical species in PM2.5 included organic carbon (OC), Cl?, NH4+, elemental carbon (EC) and Si, which account for 69.7% of PM2.5 mass. OC was from the unburned carbon in the exhaust, which adsorbed onto the particulate during the cooling process. High Cl? emission is primarily attributable to wastes containing plastic bags made of polyvinyl chloride, salt in kitchen refuse and waste biomass, and so on. Minor species that account for 0.01–1% of PM2.5 mass included SO42-, K+, Na, K, NO3?, Al, Ca2+, Zn, Ca, Cu, Fe, Pb, and Mg. The mean ratio of dilution method/in-stack hot method was 0.454. The contents of water-soluble ions (Cl?, SO42-, NO3?) were significantly enriched in PM2.5 via gas-to-particle conversion in the dilution process. Results indicate that in-stack hot sampling would underestimate levels of these species in PM2.5.

Implications: PM2.5 samples from a municipal solid waste incinerator (MSWI) were collected simultaneously by a dilution sampling technique and a traditional in-stack method. PM2.5 emission factors and chemical speciation profiles were established. Dilution sampling provides more reliable data than in-stack hot sampling. The results can be applied to estimate the PM2.5 emission inventories of MSWI, and the source profile can be used for contribution estimate of chemical mass balance modeling.  相似文献   

17.
Continuous measurement of PM10, PM2.5 and carbon (organic, elemental composition) concentrations, and samples of PM10 and PM2.5 collected on a polycarbonate membrane filter (Nuclepore®, pore size: 0.8 μm), were carried out during a period from December 1998 to January 1999 at Shinjuku in Tokyo in order to investigate the chemical characterization of particles in winter-night smog within a large area of the Japan Kanto Plain including the Tokyo Metropolitan area. These were measured using an ambient particulate monitor (tapered element oscillating microbalance—TEOM) and a carbon particulate monitor. Elemental compositions in the filter samples of PM10 and PM2.5 were determined by means of particle-induced X-ray emission (PIXE) analysis. Ionic species (anion: F, Cl, NO3, SO42− and C2O42−; cation: Na+, NH4+, K+, Ca2+ and Mg2+) in the filter samples were analyzed by ion chromatography. The temporal variation patterns of PM2.5 were similar to those of PM10 and carbon. PM2.5 made up 90% of the PM10 at a high concentration, and 70% at a low concentration. Concentrations of 22 elements in both the PM10 and PM2.5 samples were consistently determined by PIXE, and Na, Mg, Al, Si, S, Cl, K, Ca, Fe, Zn and Pb were found to be the major components. Among these S and Cl were the most dominant elements of the PM2.5 and PM10 at high concentrations. Ionic species were mainly composed of Cl, NO3, SO42− and NH4+. The component proportion of carbon, the other elements (total amount of measured elements other than S and Cl) and secondary-formed particles of PM2.5 was similar to that of PM10. The major component was carbon particles at a low concentration and secondary-formed particles at a high concentration. The proportion of NH4NO3 and NH4Cl plus HCl in secondary-formed particles at a high concentration, in particular, was as high as 90%.  相似文献   

18.
The concentrations and characteristics of the major components in ambient fine particles in the urban city of Kaohsiung, Taiwan were measured and evaluated. PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and analyzed for water-soluble ion species using ion chromatography and for carbonaceous species using an elemental analyzer. It was found that SO42−, NO3, and NH4+ dominated the identifiable components, and occupied 42.2% and 90.0% of PM2.5 mass and total dissolved ionic concentrations. Carbonaceous species (organic and elemental carbon) accounted for 20.8% of PM2.5. The secondary aerosol formed through the NO2/SO2 gas-to-particle conversion was estimated based on the sulfur/nitrogen oxidation ratio (SOR/NOR), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR and NOR values were 0.25 and 0.07 for PM2.5. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO42− from SO2 along with NO3 from NO2 in the atmosphere. The secondary organic carbon formed through the volatile organic compound gas-to-particle conversion was estimated from the minimum ratio between organic and elemental carbon obtained in this study, and was found to constitute 40.0% of the total organic carbon for PM2.5 (6.6% of the particle mass). The results obtained in this study suggest that the formation of secondary aerosols due to conversion from gaseous precursors is significant and important in urban locations.  相似文献   

19.
Abstract

Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 [H9262]g/m3 and from 5 to 18 µg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 [H9262]g/m3, with observed 24-hr peaks reaching levels as high as 160 [H9262]g/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4 2?) and nitrate (NO3 ?) components of PM2.5 and PM10 and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10–2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

20.
Chemical composition of rainwater was studied in the northeastern Romania, Iasi region, and the concentrations of major inorganic and organic ions were measured in samples collected between April 2003 and December 2006. The pH of the rainwater is 5.92 (volume weighted mean average, VWM) suggesting a sufficient load of alkaline components neutralizing its acidity. On average, 97% of the acidity in the collected samples is neutralized by CaCO3 and NH3. Clear seasonal variations were observed for some of the identified ions (e.g., SO42−, NO3, Ca2+, NH4+). The data obtained during this work revealed that both concentrations and fluxes of anthropogenic source-related ions (e.g., SO42−, NO3 and NH4+) are among the highest reported for European sites. It is shown that meteorology and long-range transport processes may concur to their high levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号