首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乌鲁木齐市环境空气中TSP和PM10来源解析   总被引:8,自引:1,他引:8       下载免费PDF全文
2002年,在乌鲁木齐市5个采样点分别采集了环境空气中的总悬浮颗粒物(TSP)和可吸入颗粒物(PM10).用化学质量平衡 (CMB)受体模型和二重源解析技术解析了TSP和PM10的来源,结果表明,各主要源类对TSP的分担率依次为扬尘34%、燃煤尘26%、建筑水泥尘10%、硫酸盐8%、土壤风沙尘7%、机动车尾气尘6%、钢铁尘2%、硝酸盐1%、其它6%;对PM10的分担率依次为扬尘30%、燃煤尘28%、建筑水泥尘11%、硫酸盐10%、机动车尾气尘8%、土壤风沙尘8%、硝酸盐1%、其它3%.  相似文献   

2.
济南市环境空气中TSP和PM10来源解析研究   总被引:35,自引:2,他引:33  
于1999—2000年在济南市5个采样点分别采集了环境空气中的总悬浮颗粒物(TSP)和可吸入颗粒物(PM10),用化学质量平衡(CMB)受体模型和二重源解析技术解析了TSP和PM10的来源。结果表明,各主要源类对TSP的贡献率依次为:扬尘34%,煤烟尘25%,土壤风沙尘18%,机动车尾气尘6%,建筑水泥尘2%,其他15%;对PM10的贡献率依次为:扬尘30%,煤烟尘27%,土壤风沙尘15%,机动车尾气尘9%,建筑水泥尘3%,其他16%。   相似文献   

3.
无锡市区环境空气中PM10来源解析   总被引:12,自引:8,他引:4  
于2005年采集了无锡市区PM10源和受体样品,并测定了无机元素、水溶性离子和碳等组分的含量. 采用OC/EC〔即ρ(OC)/ρ(EC)〕最小比值法确定了二次有机碳(Secondary Organic Carbon)对PM10的贡献,并据此重新构建了受体化学成分谱,使用化学质量平衡受体模型(CMB)和二重源解析技术对无锡市区的PM10来源进行了解析. 结果表明:城市扬尘是无锡市环境空气中PM10的主要来源,其分担率达50.49%;煤烟尘和机动车尾气尘的分担率也分别为13.97%和7.80%;其他重要源类按分担率依次为二次有机碳,SO42-,建筑水泥尘,NO3-,土壤尘和钢铁尘等,其中二次有机碳年贡献值为6.94 μg/m3,年分担率为6.18%.   相似文献   

4.
宁波市环境空气中PM10和PM2.5来源解析   总被引:21,自引:4,他引:17  
2010年在宁波3个环境受体点采集不同季节的PM10和PM2.5样品,同时采集颗粒物源类样品,分析它们的质量浓度及多种无机元素、水溶性离子和碳等组分的含量.采用OC/EC最小比值法确定了SOC(二次有机碳)对PM10和PM2.5的贡献,据此重新构建了受体化学成分谱.使用化学质量平衡模型对宁波市区的PM10和PM2.5来源进行了解析.结果表明:城市扬尘、煤烟尘、二次硫酸盐和机动车尾气尘是环境空气中PM10的主要来源,其分担率分别为23.0%、15.9%、13.3%和12.3%;对PM2.5有重要贡献的源类是城市扬尘、煤烟尘、二次硫酸盐、机动车尾气尘、二次硝酸盐和SOC,其分担率分别为19.9%、14.4%、16.9%、15.2%、9.78%和8.85%.   相似文献   

5.
利用二重源解析技术解析抚顺市大气颗粒物的来源   总被引:2,自引:0,他引:2  
在利用CMB模型对大气颗粒物进行解析时经常遇到一组数据多种结果的现象,同时,扬尘属于混合尘源类,与一些单一尘源类之间可能存在严重的共线性,从而很难准确地解析出各单一尘源类对受体的贡献值.二重源解析技术较好地解决了上述问题.本文利用二重源解析技术对抚顺市的大气颗粒物来源进行了解析.解析结果表明扬尘、土壤风沙尘、煤烟尘和有机碳是抚顺市环境空气中TSP的四大排放源类,其贡献率分别为扬尘37.5%、土壤风沙尘15.9%、有机碳13.9%、煤烟尘6.0%.  相似文献   

6.
秦皇岛市大气颗粒物来源解析研究   总被引:17,自引:0,他引:17       下载免费PDF全文
对秦皇岛海港区和山海关区的颗粒物来源进行了定性识别和定量解析。并考察了重点污染源——我国最大的煤码头秦皇岛港煤码头对市区扬尘和TSP中的碳的影响。得出秦皇岛市海港区和山海关区TSP主要来源为风沙、扬尘,其次为燃煤飞灰和海盐尘。气象条件特别是风向对TSP各源分担率的影响很大,秦皇岛市煤码头是该区域TSP中碳的主要来源。不同气象条件下,煤码头对海港区和山海关区的影响程度明显不一样。   相似文献   

7.
用化学质量平衡法对抚顺市望花、新华、东洲、站前、水库五个采样点的地面扬尘进行了污染物来源定量解析。计算结果表明 :对于望花、新华和站前三个监测点 ,土壤尘、建筑尘和燃煤飞灰的比例占据主要污染源的前三位。三个监测点土壤尘、建筑尘和燃煤飞灰所占比例的平均值分别为 :61.0 % ,17.7% ,15 .3 %。土壤尘、燃煤飞灰是东洲、水库点扬尘的主要来源。土壤尘、燃煤飞灰所占比例的平均值分别为 :5 4.5 % ,2 7.9%。所有扬尘样品中 ,冶金尘、汽车尾气均占较小比例 ,未发现燃油源的贡献。  相似文献   

8.
为了对包头市环境空气中PM2.5来源进行解析,在包百大楼设立采样点,于2011年9月—2012年6月利用TH-150C智能中流量(TSP)采样器与PM10-5-2.5大气可吸入颗粒物切割器,采集细颗粒物的重量,利用测量前后滤膜的重量差和通入气体流量体积的比值得出PM2.5的质量浓度。利用电感耦合等离子体质谱仪测定PM2.5中无机元素的含量;2001A型有机碳/元素碳(OC/EC)分析仪,测定PM2.5中碳组分的含量;采用DionexIC-2500型离子色谱仪测定无机离子的含量,最后利用富集因子法对PM2.5进行源解析。研究结果表明:包头市环境空气中PM2.5的质量浓度随时间变化,特征为秋冬季明显高于春夏季,主要原因是进入10月份包头市开始采暖,燃煤的大量增加导致PM2.5的质量浓度的升高,同时源解析结果表明其主要来源为燃煤、汽车尾气的排放、金属冶炼、生物质的燃烧(垃圾焚烧)和土壤尘(包括建筑和道路扬尘等)。  相似文献   

9.
海口市PM_(2.5)和PM_(10)来源解析   总被引:2,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

10.
贵阳市秋、冬季PM_(2.5)中碳组分污染特征及来源分析   总被引:2,自引:0,他引:2  
王珍  郭军  陈卓 《地球与环境》2015,43(3):285-289
为研究贵阳市大气细粒子PM2.5中有机碳(OC)和元素碳(EC)的污染特征,于2013年10月14日至2013年12月25日,采集2个监测点位秋季和冬季的PM2.5样品,检测分析PM2.5中有机碳(OC)、元素碳(EC)的质量浓度。结果表明,秋季PM2.5中OC的平均浓度为14.9μg/m3,EC的平均浓度为2.31μg/m3;冬季PM2.5中OC的平均浓度为26.2μg/m3,EC的平均浓度为7.53μg/m3,呈冬季高、秋季低的季节变化特征。秋、冬季PM2.5中OC/EC的值均大于2,表明存在二次有机碳(SOC)的贡献;秋季SOC的值为6.89μg/m3,冬季SOC的值为8.29μg/m3。通过计算PM2.5中8个碳组分丰度,初步判断PM2.5中秋季碳的主要来源是汽车尾气、道路扬尘和生物质燃烧,冬季碳的主要来源是汽车尾气、燃煤尘和道路扬尘。  相似文献   

11.
兰州市大气沉降尘中正构烷烃分布及环境意义   总被引:3,自引:1,他引:2  
文章主要分析了兰州市冬季采暖期大气沉降尘有机质正构烷烃的组成,其分布型式主要有三种类型:一种是前峰为主的双峰型,以C12~C25,C27,C29,C31为主峰碳,具有较明显的奇偶优势;第二种是双峰型,以C12~C25,C27,C29,C31为主峰碳,奇偶优势不明显;第三种为后峰为主的单峰型,C27,C29,C31为主峰碳8。兰州市的大气总颗粒物TSP中有机质为后峰为主的单峰型,C29,C31为主峰碳,而C24~C27的含量也相对较多,是构成TSP中有机质正构烷烃的主要组分。兰州市冬季产生的大气颗粒物中有机质主要来源于陆生高等植物和人类活动源,如燃煤、油制品的不完全燃烧、汽车尾气的排放等,从正构烷烃图谱中也可以明显反映出兰州市冬季人类活动源有较大的比例,冬季植被状态较差。沉降尘中微生物的作用也可能是增加有机质含量的一种因素。  相似文献   

12.
大气颗粒物中包含多种组分的气溶胶,其中碳质气溶胶由于对人体健康、能见度有较大影响,已受到越来越多的关注.为研究碳质气溶胶的长期变化规律,采集了成都市2009—2013年的PM10样品,对其中所含的无机元素、水溶性离子及碳组分分别进行测定,并使用“PMF(正定矩阵因子分解法)-比值”模型分别对PM10和所含的碳质气溶胶的来源进行分析.结果表明,1月、2月、5月和12月的碳质气溶胶浓度较高,其中1月、2月和12月的OC/EC(有机碳与元素碳质量浓度之比)较高,并且PMF-比值模型计算结果也显示冬季SOC增多,表明冬季可能有更多的二次有机碳(SOC)生成;5月的char-EC/soot-EC(二者质量浓度之比,其中char-EC=EC1-OP,soot-EC=EC2+EC3,它们可更好地区分源类)较高,K含量也较高,表明可能有更多的生物质燃烧排放.PM10解析共发现6类源,依次为地壳扬尘(26.5%)、二次硫酸盐(25.1%)、燃煤&生物质燃烧混合源(17.3%)、二次硝酸盐&二次有机碳混合源(12.3%)、机动车源(11.8%)和水泥尘源(7.0%);碳质气溶胶解析发现,OC主要来源依次为机动车源(38.2%)、燃煤&生物质燃烧混合源(33.1%)和二次有机碳(25.3%),char-EC的主要来源是燃煤&生物质燃烧混合源和机动车源,分别占50.5%和45.4%,soot-EC则主要受机动车影响(达73.2%).研究显示,成都市PM10主要来自于地壳扬尘、二次生成和燃煤&生物质燃烧,而碳质气溶胶主要来自于机动车、燃煤&生物质燃烧.   相似文献   

13.
用因子分析法解析抚顺市大气颗粒物来源   总被引:1,自引:0,他引:1  
用因子分析法对2002年7月在抚顺市望花、新华、东洲、站前、水库五个监测点采集的TSP颗粒物样品进行了污染源定性识别和定量分析。计算结果表明,对于颗粒物样品,主要污染物来源是土壤尘,燃煤飞灰,建筑水泥,对颗粒物的贡献达71.2%。其次是燃煤,燃油的贡献占20.0%,汽车尾气占6.0%。  相似文献   

14.
基于CALPUFF-CMB复合模型的燃煤源精细化来源解析   总被引:1,自引:0,他引:1  
为了反映燃煤源对环境受体的影响情况,利用扩散模式(CALPUFF模式)对燃煤源多种子源类的排放、扩散过程进行模拟,得到燃煤源各子源类对环境受体中PM10的影响权重,进而构建更具代表性的燃煤源成分谱.然后将受体颗粒物化学成分和两套源成分谱(基于环境影响构建的燃煤源成分谱和基于各子源类煤烟尘排放量加权平均的传统源成分谱),分别纳入CMB模型进行乌鲁木齐市采暖季环境受体中PM10的来源解析.结果表明:基于CALPUFF模拟结果,得到燃煤源的3类子源类­电厂、供热、工业燃煤源的影响权重分别为0.02、0.39和0.59.基于传统方法构建的源成分谱进行源解析的结果显示,各源类的贡献大小依次为:集中燃煤(27.2%) > 城市扬尘(19.1%) > 二次硫酸盐(15.7%) > 民用散煤(9.9%) > 二次硝酸盐(9.5%) > 机动车尾气尘(7.6%) > 钢铁尘(1.2%) > 建筑水泥尘(0.2%);而基于环境影响构建的源成分谱获得的结果显示:二次硫酸盐(20.1%) > 城市扬尘(20%) > 集中燃煤(18.9%) > 民用散煤(11.5%)二次硝酸盐(10.5%) > 机动车尾气尘(9%) > 钢铁尘(1.7%) > 建筑水泥尘(1.4%).基于不同燃煤源子源类对受体环境的影响权重,将乌鲁木齐市颗粒物来源解析结果进一步细分,得到相对精细化的来源解析结果.结果显示,民用散煤的贡献为11.5%,电厂燃煤源为0.4%,供热燃煤源为7.4%,工业燃煤源为11.1%.  相似文献   

15.
天津市EC和OC气溶胶排放源的估算   总被引:4,自引:1,他引:3       下载免费PDF全文
王娉  马建中 《环境科学研究》2009,22(11):1269-1275
通过调研天津市污染源,在原有NOx,SO2,NMVOC,CO,NH3,PM10和PM2.5等污染物的基础上,从工农业生产和居民生活方面计算了天津市各行业、各区县的元素碳(EC)和有机碳(OC)排放量,对天津市2003年大气污染源排放清单进行了发展和补充. 结果表明:天津市2003年EC排放量为1.30×104 t,OC为2.40×104 t. 从排放源的行业分布来看,燃煤源是天津市EC和OC的重要排放源,对EC和OC排放量的贡献均为42%. 移动源与秸秆燃烧也是较大排放源,移动源对EC和OC排放量的贡献分别为43%和35%,秸秆燃烧对EC和OC的贡献分别为15%和23%. 炼焦、钢铁行业是EC和OC的主要工业源,炼焦行业的EC和OC排放量分别占工业源排放量的47%和23%,钢铁行业的EC和OC排放量分别占工业源排放量的24%和18%. 2003年天津市区对EC和OC的贡献均高于其他区县,其次,武清区、塘沽区对2种污染物的贡献也很高. 民用源的EC排放量在PM2.5中占33.7%. 集中供热的OC排放量在PM2.5中占67.6%,在各行业中最高. EC和OC排放量在PM2.5中所占比例最高的区域均在市区,最高值分别为25.0%和43.3%,其次是大港区和塘沽区.秸秆燃烧和移动源的估算误差较小,工业燃煤源的估算误差较大. 秸秆燃烧的正负误差分别为+18%和-16%,工业燃煤源的正负误差分别为+300%和-50%.   相似文献   

16.
太原市PM10及其污染源中碳的同位素组成   总被引:1,自引:0,他引:1       下载免费PDF全文
通过采集太原市PM10及其主要源(煤烟尘、机动车尾气尘、土壤风沙尘)样品,结合离线分步加热氧化法和同位素质谱仪测定了颗粒物中有机碳(OC),元素碳(EC)和总碳(TC)的同位素组成, 并探讨了太原市PM10中碳的来源.结果表明,太原市冬季、春季PM10中OC、EC和TC的碳同位素组成分别是-34.7‰、-23.5‰、-23.9‰和-30.5‰、-23.1‰、-23.9‰; 煤烟尘中OC、EC和TC的碳同位素组成分别是-26.5‰、-23.2‰、-23.6‰,土壤风沙尘分别为-24.6‰、-14.1‰、-17.3‰,汽油车和柴油车尾气尘分别为-27.7‰、-25.5‰、-27.0‰和-25.7‰、-24.3‰、-24.8‰. EC和TC的同位素组成是区分土壤风沙尘较好的标识指标,TC的同位素组成是汽油车尾气尘较好的标识指标;利用二元复合计算公式结果显示土壤风沙尘中OC、EC占TC的百分含量分别为30%、70%;煤烟尘中OC、EC占TC的百分含量分别为11%、89%;汽油车尾气尘中OC、EC占TC的百分含量分别为78%、22%,柴油车尾气尘中OC、EC占TC的百分含量分别为36%、64%;太原市PM10中的TC和EC主要来源于煤烟尘,OC少部分来源于机动车尾气排放,另外还有其他的重要贡献源.  相似文献   

17.
Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide(CO), total suspended particles(TSPs), PM2.5, organic carbon(OC),elemental carbon(EC) and polycyclic aromatic hydrocarbons(PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%–88% CO, 74%–99%TSP, 73%–76% PM2.5, 64%–98% OC, 92%–99% EC and 80%–83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%–97% CO, 73%–87% TSP, 79%–88%PM2.5, 94%–96% OC, 91%–99% EC and 63%–96% PAH reduction compared to biomass burning. The adoption of gas fuels(i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves.  相似文献   

18.
廊坊市是北京市及周边传输通道“2+26”城市之一.为研究廊坊市开发区冬季颗粒物中碳组分污染特征,于2018年1月5日—2月5日在廊坊市开发区国控点位同步开展PM2.5及PM10样品采集,使用DRI分析OC(有机碳)与EC(元素碳)的质量浓度.结果表明:廊坊开发区冬季ρ(PM2.5)、ρ(PM10)分别为(54.5±46.0)(91.0±58.2)μg/m3.PM2.5中ρ(OC)、ρ(EC)分别为14.64、3.54 μg/m3,PM10中分别为17.07、4.58 μg/m3;PM2.5、PM10中ρ(OC)与ρ(EC)相关性均较好,R2均为0.91(P < 0.01),表明二者具有相似的来源;在PM2.5和PM10中OC/EC〔ρ(OC)/ρ(EC),下同〕分别为4.46和4.16,ρ(SOC)(SOC为二次有机碳)分别为6.15和5.88 μg/m3,分别占ρ(OC)的42.1%和37.7%,表明二次污染较严重.碳组分丰度及主成分分析结果表明,PM2.5与PM10中碳组分来源基本一致,主要来源于汽车尾气、水溶性极性化合物、生物质燃烧及燃煤的混合源,柴油车排放,以及道路扬尘.后向气流轨迹聚类结果表明,颗粒物及碳组分质量浓度受途径内蒙古自治区及河北省中部、北京市南部气团的影响较大;对于碳组分来源,道路扬尘及汽车尾气受气团传输的影响较大,而生物质燃烧、燃煤等受气团传输的影响较小.研究显示,汽车尾气、燃烧源及道路扬尘为廊坊市开发区冬季碳组分的主要来源.   相似文献   

19.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响.   相似文献   

20.
运城市道路扬尘化学组成特征及来源分析   总被引:15,自引:14,他引:1  
采集运城市区道路扬尘及5类单一尘源类样品(盐湖尘、土壤风沙尘、机动车尾气尘、建筑水泥尘和煤烟尘),测定元素、离子和碳质组分含量并与其他城市比较,在此基础上通过富集因子法和潜在生态风险评价法揭示道路扬尘的化学组成特征,同时运用化学质量平衡模型解析道路扬尘的来源.结果表明,与其他城市相比,Na和SO_4~(2-)含量高,Si含量相对较低是运城市道路扬尘化学组成的主要特征,Na、SO_4~(2-)和Si质量分数分别为12.197 0%、8.597 1%和9.112 3%;富集因子计算结果表明道路扬尘中Pb、Cu、Cr、V、As、Ni、Na、Zn等元素的来源明显受到人为活动影响;道路扬尘重金属潜在生态风险为强,工业生产、化石燃料燃烧、机动车排放等人为源是影响道路扬尘生态风险等级的重要因素;煤烟尘、建筑水泥尘和机动车尾气尘的化学成分谱与其他城市相似,土壤风沙尘中Na和SO2-4含量相对较高,运城市特有的盐湖尘的主要化学组分是Na、SO_4~(2-),含量分别为30.3%、22.7%;化学质量平衡模型解析结果表明,盐湖尘对道路扬尘贡献最大(53%),其次是土壤风沙尘(21%),机动车尾气尘(8%)、建筑水泥尘(7%)和煤烟尘(5%)的贡献几乎相当.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号