首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A landfill operated in Ste. Sophie, Québec, Canada was instrumented to better understand the waste stabilization process in northern climates. Instrument bundles were placed within the waste to monitor temperature, settlement, oxygen, moisture content, total load, mounding of leachate and electrical conductivity. A finite element model was developed to simulate the heat budget for the first waste lift placed in the winter months and was calibrated using the first 10.5 months of collected temperature data. The calibrated model was then used to complete a sensitivity analysis for the various parameters that impact the heat budget. The results of the analysis indicated that the heat required for phase change to thaw the liquid fraction within frozen waste had a significant impact on the heat budget causing sections of waste to remain frozen throughout the simulation period. This was supported by the data collected to date at Ste. Sophie and by other researchers indicating that frozen waste placed during the winter months can remain frozen for periods in access of 1.5 years.  相似文献   

2.
Landfill leachate characterization is a critical factor in establishing a corresponding effective management strategy or treatment process. However, it is often difficult to forecast leachate quality because of a variety of influencing factors such as waste composition and landfill operations. This paper describes leachate formation mechanisms, summarizes leachate quality indicators, and investigates the temporal variation of leachate quality from pre-sorted and baled municipal solid waste characterized with high organic and moisture content. The purpose of the study is to evaluate the potential effects of waste composition and site-specific operational procedures on biodegradation processes and leachate quality at a field-scale landfill that receives in excess of 1800 tonnes per day of refuse. For this purpose, waste disposal and leachate generation rates were monitored and leachate samples were collected for a period of 18 months during the early stages of refuse deposition. Chemical analysis was performed on the samples and the temporal variation of several parameters were monitored including pH, COD, TOC, TDS, chlorides, sulfates, orthophosphates, nitrates, ammonia nitrogen, hardness, and heavy metals. Chemical concentration levels were related to biological activity within the landfill and the results indicated that: (1) pre-sorting and baling of the waste did not hinder waste stabilization; and (2) the high organic and moisture contents resulted in an extremely strong leachate, particularly at the onset of biodegradation processes, which can affect the leachate treatment facility.  相似文献   

3.
Management and prediction of the movement and distribution of fluids in large landfills is important for various reasons. Bioreactor landfill technology shows promise, but in arid or semi-arid regions, the natural content of landfilled waste may be low, thus requiring addition of significant volumes of water. In more humid locations, landfills can become saturated, flooding gas collection systems and causing sideslope leachate seeps or other undesirable occurrences. This paper compares results from two different approaches to monitoring water in waste. At the Brock West Landfill in eastern Canada, positive pore pressures were measured at various depths in saturated waste. The downward seepage flux through the waste is known, thus the vertical saturated hydraulic conductivity of the waste at this landfill was determined to be 3 × 10(-7)cm/s. By comparison, the Spadina Landfill in western Canada is predominantly unsaturated. The infiltration of moisture into the waste was measured using moisture sensors installed in boreholes which determined arrival time for moisture fronts resulting from major precipitation events as well as longer-term change in moisture content resulting from unsaturated drainage during winter when frozen ground prevented infiltration. The unsaturated hydraulic conductivity calculated from these data ranged from approximately 10(-6)cm/s for the slow winter drainage in the absence of significant recharge to 10(-2)cm/s or higher for shallow waste subject to high infiltration through apparent preferential pathways. These two very different approaches to field-scale measurements of vertical hydraulic conductivity provide insight into the nature of fluid movement in saturated and unsaturated waste masses. It is suggested that the principles of unsaturated seepage apply reasonably well for landfilled waste and that the hydraulic behavior of waste is profoundly influenced by the nature and size of voids and by the degree of saturation prevailing in the landfill.  相似文献   

4.
Shredded green wastes were composted in windrows, at the Harewood Whin landfill, near the city of York, in West Yorkshire, UK. Landfill leachate were added twice during the second and fourth week of the process in two piles. One pile was turned once every week for eight weeks and the other was turned twice, during the same period. Each time approximately, 2 m3 of leachate was added, into each pile. The two piles each contained about 45 m3 of shredded green waste. The effect of adding leachate on the sanitisation of the green waste during composting, was evaluated based on the changes in the levels of faecal coliforms and faecal streptococci. The results suggested that using leachate as the moisture source had no significant effect (tested with two factors ANOVA test) on the sanitisation process when compared with two similar piles, used as the control, for which tap water was used for moisture addition. In all four piles sanitisation was almost complete and below the acceptable levels. Additionally, the results indicated that there was no significant effect on the sanitisation process of the turning frequency.  相似文献   

5.
AV Miljø is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH4) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed that the gas generated in the cell with mixed combustible waste consisted of mainly CH4 (70%) and carbon dioxide (CO2) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH4 (27%) and nitrogen (N2) (71%), containing no CO2. The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH4 mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH4 generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH4 emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH4 emission from the disposal site was found to be 820 ± 202 kg CH4 d−1. The total emission rate through the leachate collection system at AV Miljø was found to be 211 kg CH4 d−1. This showed that approximately ¼ of the emitted gas was emitted through the leachate collections system making the leachate collection system an important source controlling the overall gas migration from the site. The emission pathway for the remaining part of the gas was more uncertain, but emission from open cells where waste is being disposed of or being excavated for incineration, or from horizontal leachate drainage pipes placed in permeable gravel layers in the bottom of empty cells was likely.  相似文献   

6.
Modelling leachate quality and quantity in municipal solid waste landfills.   总被引:1,自引:0,他引:1  
The operational phase of landfills may last for 20 years or more. Significant changes in leachate quality and generation rate may occur during this operational period. A mathematical model has been developed to simulate the landfill leachate behaviour and distributions of moisture and leachate constituents through the landfill, taking into consideration the effects of time-dependent landfill development on the hydraulic characteristics of waste and composition of leachate. The model incorporates governing equations that describe processes influencing the leachate production and biochemical processes taking place during the stabilization of wastes, including leachate flow, dissolution, acidogenesis and methanogenesis. To model the hydraulic property changes occurring during the development stage of the landfills, a conceptual modelling approach was proposed. This approach considers the landfill to consist of cells or columns of cells, which are constructed at different times, and considers each cell in the landfill to consist of several layers. Each layer is assumed to be a completely mixed reactor containing uniformly distributed solid waste, moisture, gases and micro-organisms. The use of the proposed conceptual model enables the incorporation of the spatial changes in hydraulic properties of the landfill into the model and also makes it possible to predict the spatial and temporal distributions of moisture and leachate constituents. The model was calibrated and partially verified using leachate data from Keele Valley Landfill in Ontario, Canada and data obtained from the literature. Ranges of values were proposed for model parameters applicable for real landfill conditions.  相似文献   

7.
This paper presents findings from long-term monitoring studies performed at full-scale municipal solid waste landfill facilities with leachate recirculation. Data from two facilities at a landfill site in Delaware, USA were evaluated as part of this study: (1) Area A/B landfill cells; and (2) two test cells (one with leachate recirculation and one control cell). Data from Area A/B were compared with proposed waste stability criteria for leachate quality, landfill gas production, and landfill settlement. Data from the test cells were directly compared with each other. Overall, the trends at Area A/B pointed to the positive effects (i.e., more rapid waste degradation) that may be realized through increasing moisture availability in a landfill relative to the reported behavior of more traditionally operated (i.e., drier) landfills. Some significant behavioral differences between the two test cells were evident, including dissimilarities in total landfill gas production quantity and the extent of waste degradation observed in recovered time capsules. Differences in leachate quality were not as dramatic as anticipated, probably because the efficiency of the leachate recirculation system at distributing leachate throughout the waste body in the recirculation cell was low.  相似文献   

8.
Pilot-scale experiment on anaerobic bioreactor landfills in China   总被引:1,自引:0,他引:1  
Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2m(3) leachate and 0.1m(3) tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.  相似文献   

9.
Considering the quality of design and construction of landfills in developing countries, little information can be derived from randomly taken leachate samples. Leachate generation and composition under monsoon conditions have been studied using lysimeters to simulate sanitary landfills and open cell settings. In this study, lysimeters were filled with domestic waste, highly organic market waste and pre-treated waste. Results over two subsequent dry and rainy seasons indicate that the open cell lysimeter simulation showed the highest leachate generation throughout the rainy season, with leachate flow in all lysimeters coming to a halt during the dry periods. More than 60% of the precipitation was found in the form of leachate. The specific COD and TKN load discharged from the open cell was 20% and 180% more than that of the sanitary landfill lysimeters. Types of waste material and kind of pre-treatment prior to landfilling strongly influenced the pollutant load. Compared to the sanitary landfill lysimeter filled with domestic waste, the specific COD and TKN load discharged from the pre-treated waste lysimeter accounted for only 4% and 16%, respectively. Considering the local settings of tropical landfills, these results suggest that landfill design and operation has to be adjusted. Leachate can be collected and stored during the rainy season, and recirculation of leachate is recommended to maintain a steady and even accelerated degradation during the prolonged dry season. The open cell approach in combination with leachate recirculation is suggested as an option for interim landfill operations.  相似文献   

10.
Recently, roofed landfills have been gaining popularity in Japan. Roofed landfills have several advantages over non-roofed landfills such as eliminating the visibility of waste and reducing the spread of offensive odours. This study examined the moisture balance and aeration conditions, which promote waste stabilisation, in a roofed landfill that included organic waste such as food waste. Moisture balance was estimated using waste characterization and the total amount of landfilled waste. Internal conditions were estimated based on the composition, flux, and temperature of the landfill gas. Finally, in situ aeration was performed to determine the integrity of the semi-aerobic structure of the landfill.With the effects of rainfall excluded, only 15% of the moisture held by the waste was discharged as leachate. The majority of the moisture remained in the waste layer, but was less than the optimal moisture level for biodegradation, indicating that an appropriate water spray should be administered. To assess waste degradation in this semi-aerobic landfill, the concentration and flow rate of landfill gas were measured and an in situ aeration test was performed. The results revealed that aerobic biodegradation had not occurred because of the unsatisfactory design and operation of the landfill.  相似文献   

11.
Practice review of five bioreactor/recirculation landfills   总被引:1,自引:0,他引:1  
Five landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor and recirculation landfills in North America from conventional landfills. The bioreactor and recirculation landfills were found to function in much the same manner as conventional landfills, with designs similar to established standards for waste containment facilities. Leachate generation rates, leachate depths and temperatures, and liner temperatures were similar for landfills operated in a bioreactor/recirculation or conventional mode. Gas production data indicate accelerated waste decomposition from leachate recirculation at one landfill. Ambiguities in gas production data precluded a definitive conclusion that leachate recirculation accelerated waste decomposition at the four other landfills. Analysis of leachate quality data showed that bioreactor and recirculation landfills generally produce stronger leachate than conventional landfills during the first two to three years of recirculation. Thereafter, leachate from conventional and bioreactor landfills is similar, at least in terms of conventional indicator variables (BOD, COD, pH). While the BOD and COD decreased, the pH remained around neutral and ammonia concentrations remained elevated. Settlement data collected from two of the landfills indicate that settlements are larger and occur much faster in landfills operated as bioreactors or with leachate recirculation. The analysis also indicated that more detailed data collection over longer time periods is needed to draw definitive conclusions regarding the effects of bioreactor and recirculation operations. For each of the sites in this study, some of the analyses were limited by sparseness or ambiguity in the data sets.  相似文献   

12.
The State of México, situated in central México, has a population of about 14 million, distributed in approximately 125 counties. Solid waste management represents a serious and ongoing pressure to local authorities. The final disposal site ("El Socavón") does not comply with minimum environmental requirements as no liners or leachate management infrastructure are available. Consequently, leachate composition or the effects of rain water input on municipal solid waste degradation are largely unknown. The aim of this work was to monitor the anaerobic degradation of municipal solid waste (MSW), simulating the water addition due to rainfall, under two different moisture content regimes (70% and 80% humidity). The study was carried out using bioreactors in both laboratory and pilot scales. The variation of organic matter and pH was followed in the solid matrix of the MSW. The leachate produced was used to estimate the field capacity of the MSW and to determine the pH, COD, BOD and heavy metals. Some leachate parameters were found to be within permitted limits, but further research is needed in order to analyze the leachate from lower layers of the disposal site ("El Socavón").  相似文献   

13.
Leachate recirculation has been shown in lysimeter, pilot-scale and full-scale investigations to reduce the time required for waste stabilization, improve leachate quality, provide the opportunity for leachate volume reduction, and to enhance the rate of gas production. New generation full-scale landfills are implementing recirculation as a leachate management tool with increasing frequency. Leachate recirculation techniques used at full-scale landfills include pre-wetting of waste, leachate spraying, surface ponds, vertical injection wells and horizontal introduction systems. From observations of operating full-scale recirculating landfills, it appears to be important to provide flexibility in design, minimize low permeability daily and intermediate cover, include adequateex situstorage volume, control infiltration into the landfill, and utilize waste moisture holding capacity efficiently.  相似文献   

14.
The ability of resistance-based sensors to measure in situ waste moisture content in a landfill was examined. One hundred and thirty-five resistance-based sensors were installed in a leachate recirculation well field at a bioreactor landfill in Florida, US. The performance of these sensors was studied for a period of over 6 years. The sensors were found to respond to an increase in moisture resulting from leachate recirculation. It was observed that 78% of sensors worked successfully in the field during the study period. The initial spatial average moisture content determined by the sensor readings (using a laboratory-derived calibration) was 42.8% compared to 23% from gravimetric readings. Eighteen sensors (13%) showed that they were saturated before liquid addition, and no change in moisture content was observed in these sensors during the study period. Laboratory-derived calibration methods resulted in an over-estimation of moisture content. An alternate field-calibration method, where wetted sensor output was assumed equal to the average of gravimetric measurements for wet samples, was evaluated. The final spatial average moisture contents were 64.2% and 44.4% for the laboratory-derived and field-derived calibration methodologies, respectively, compared to 45% measured gravimetrically from excavated waste samples. When moisture content was determined using a mass balance approach, the result was 34.6%. The results suggest that when appropriately calibrated, resistivity-based sensors can be used to obtain a reasonably accurate estimate of local moisture content. However, caution should be taken to extend the moisture content values that are representative of waste surrounding the sensors to estimate the overall moisture content on the landfill-wide scale.  相似文献   

15.
The "LaNDy" model (landfill nitrogen dynamics model) is a new mathematical tool for the evaluation of the long-term behaviour of nitrogen in mechanical-biologically pretreated (MBP) waste. LaNDy combines a hydraulic model based on RICHARD's equation with one-dimensional heat flow in landfills, kinetics of biological degradation, gas diffusion, nitrification and denitrification. A suitable temperature-dependent N mineralisation sub-model was based on numerous data from the literature and own LSR-experiments. With the "nitrification modus" of the LaNDy model, kinetic data of nitrification, thermodynamic data of denitrification and diffusion characteristics of gaseous components (especially of oxygen and methane) are used as an additional input for the preliminary calculation of the long-time impact of nitrification and denitrification. Examples of predicted temperature distribution and leachate ammonium concentrations, using different landfill size, age of the landfill (10 to approximately 100 a) and hydraulic conductivity of the MBP waste, are presented in this paper.  相似文献   

16.
The possibility of in situ removal of heavy metals found in leachate generated at municipal solid waste landfills was studied through amendment of daily cover soil. Kahrizak landfill, which receives the waste generated at Tehran, was selected as the source of leachate and soil samples. Manganese and zinc were selected in this study. The soil sample taken from the Kahrizak site contained about 17% clay, which was presumed to have significant capability for removing manganese and zinc. This capability was assumed to be enhanced further through the addition of lime and consequently to improve the potential for chemical precipitation of the selected metals. The in situ removal experiment was accomplished through a set of seven columns filled with the sampled soil with varying contents of lime (i.e., from 0% to 6% by dry weight). Fresh leachate of low pH was added to the columns on a daily basis. Concentrations of manganese and zinc were measured in the influent and effluent during 40 days when biological clogging resulted in a condition of almost no outflow in the columns. The results indicated a substantial increase in removal efficiency through the addition of lime to the daily cover soil. Desorption resulting from the low pH of fresh leachate occurs at later stages compared to the column with no lime addition.  相似文献   

17.
Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequently applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.  相似文献   

18.
Bioreactor technology is a waste treatment concept consisting in speeding up the biodegradation of landfilled waste by optimizing its moisture content through leachate recirculation. The measurement of variations in waste moisture content is critical in the design and control of bioreactors. Conventional methods such as direct physical sampling of waste reach their limits due to the interference with the waste matrix. This paper reviews geophysical measurements such as electrical direct current and electromagnetic slingram methods for measuring the electrical conductivity. Electrical conductivity is a property, which is linked to both moisture and temperature and can provide useful indications on the biodegradation environment in the waste mass. The study reviews three site experiments: a first experimentation shows the advantages (correlation between conductive anomaly and water seepage) but also the limits of geophysical interpretation; the two other sites allow the leachate recirculation to be tracked by studying the relative resistivity variation versus time from electrical 2D imaging. Even if some improvements are necessary to consider geophysical measurements as a real bioreactor monitoring tool, results are promising and could lead to the use of electrical 2D imaging in bioreactor designing.  相似文献   

19.
This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period.  相似文献   

20.
The objective of the study was to develop a low cost and environmentally friendly liner system for a landfill bioreactor to harness energy from waste. The landfill bioreactor test cell was constructed and evaluated for performance under dry tropical conditions of Sri Lanka. The research was carried out from March 2009 to September 2010. The clay-waste polyethylene-clay composite liner system was developed and permeability was tested. The permeability values of the liner under both saturated and unsaturated conditions at the high estimated hydraulic head of 86.2 cm were in between 6.3 × 10−8 and 2.6 × 10−8 cm/s. The permeability of the liner under waste filled condition varied between 2.17 × 10−9 and 8.15 × 10−9 cm/s, which satisfies the standard permeability value. Thus, the results were below the minimum requirement at very high estimated leachate head. After loading the test cell, leachate and permeate characteristics were analyzed for 273 days, from January 2010 to September 2010. The study showed the relationships among various parameters including pH, electrical permeability, chemical oxygen demand, biological oxygen demand, ammonia, nitrate, phosphate, total solids, volatile solids, total suspended solids and volatile suspended solids. The results of the analysis indicated that there are significant differences in the values of leachate and permeate parameters. The permeate parameters had values very much lower than those of leachate. It reveals that the clay-waste polyethylene-clay composite liner system reduced the concentration of these parameters when the leachate passed through the liner. The biofilm formed in waste polyethylene within the liner may have degraded most of organic materials found in the leachate when it passed through the liner. Therefore, the clay-waste polyethylene-clay composite liner system can be applied for full scale landfill bioreactors, particularly for Asian developing countries, due to better performance and more environmentally friendly characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号