首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
阴-阳离子有机膨润土吸附水中苊的性能及机理研究   总被引:3,自引:0,他引:3  
用溴化十二烷基三甲铵(DTMAB)、十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(SDBS)按不同配比制得一系列阴一阳离子有机膨润土,研究了有机膨润土吸附水中苊的性能及机理。结果表明,阴一阳离子有机膨润土对水中苊的吸附去除能力大于单阳离子有机膨润土,且与改性时所用阴离子表面活性剂的种类、浓度有关;阴一阳离子有机膨润土对苊的吸附等温线呈线性,吸附机理主要是分配作用。  相似文献   

2.
Ma J  Zhu L 《Chemosphere》2007,68(10):1883-1888
A novel technology of wastewater treatment was proposed based on simultaneously synthesis of organobentonite and removal of organic pollutants such as phenols from water in one-step, which resulted that both surfactants and organic pollutants were removed from water by bentonite. The effects of contact time, pH and inorganic salt on the removal of phenols were investigated. Kinetic results showed that phenols and cetyltrimethylammonium bromide (CTMAB) could be removed by bentonite in 25 min. The removal efficiencies were achieved at 69%, 92% and 99%, respectively, for phenol, p-nitrophenol and beta-naphthol at the initial amount of CTMAB at about 120% cation exchange capacity of bentonite. Better dispersion property and more rapid bentonite sedimentation were observed in the process. The results indicated that the one-step process is an efficient, simple and low cost technology for removal of organic pollutants and cationic surfactants from water. The proposed technology made it possible that bentonite was applied as sorbent for wastewater treatment in industrial scale.  相似文献   

3.
有机改性膨润土的稳定性研究   总被引:2,自引:1,他引:1  
利用十六烷基三甲基溴化铵(HDTMAB)对膨润土进行有机改性,研究了不同振荡时间、振荡强度、温度、pH以及盐溶液浓度下改性后有机膨润土的稳定性。结果表明,表面活性剂用量为0.6CEC时,改性的膨润土比较稳定。在同一环境因素下,当表面活性剂用量大于0.6CEC时,有机膨润土的稳定性均随着改性剂用量的增加而降低。振荡时间、振荡强度以及反应温度对有机膨润土稳定性影响不明显;酸性条件下会降低有机膨润土的稳定性,而中性、碱性条件下,有机膨润土的稳定性会提高;对于0.6CEC改性的有机膨润土,当NaC l、CaC l2的浓度由0.2 mol/L增加到0.6 mol/L时有机膨润土的稳定性得到了显著的提高,浓度继续增大,稳定性下降。所以当外界NaC l或CaC l2浓度为0.6 mol/L时,0.6CEC改性的有机膨润土相对0.8CEC以及1.0CEC改性的膨润土稳定,可用做废水处理的吸附剂,且无二次污染。  相似文献   

4.
Zhu L  Ruan X  Chen B  Zhu R 《Chemosphere》2008,70(11):1987-1994
A novel strategy utilizing the phenyls interaction and the hydrophobic affinity of available siloxane surface in the interlayer of bentonite was proposed to improve the sorption capabilities of organobentonites for water soluble aromatic contaminants. A unique organobentonite (65BTMA) was synthesized by intercalating benzyltrimethylammonium cation (BTMA+) into the interlayer of a reduced-charge bentonite with cation exchange capacity (CEC) of 65 cmol kg−1. Phenol, aniline and toluene were used as model compounds of water soluble aromatic contaminants. Their respective removal efficiencies by 65BTMA were achieved at 83.3%, 89.2% and 97.3% at the initial concentration of 20 mg l−1. To reveal the sorption mechanism, sorption characteristics of aromatic contaminants to 65BTMA were compared with that of aliphatic contaminants in similar molecular size. And various organobentonites were prepared by combining TMA+ (tetramethylammonium), BTMA+, HTMA+ (heptyltrimethylammonium) and CTMA+ (cetyltrimethylammonium) with two bentonites (CEC = 108 and 65 cmol kg−1). To 65BTMA, sorption magnitudes of aromatic contaminants were much greater than that of aliphatic compounds with similar size; and dramatically higher than those to other organobentonites at low pollutant concentrations. These observations revealed that the strong phenyls interactions contributed significantly to sorb the aqueous soluble aromatic contaminants to 65BTMA (>90%), and which favored to design uniquely powerful sorbents.  相似文献   

5.
A novel separation technique known as an aqueous surfactant two-phase (ASTP) extraction is a promising method to remove organic contaminants from wastewater. When cationic and anionic surfactants are mixed at certain surfactant concentrations and compositions, the solution separates into two immiscible aqueous phases. One is the surfactant-rich and the other is the surfactant-dilute phase. The organic contaminants will solubilize into the surfactant aggregates and concentrate in the small volume surfactant-rich phase. The other phase contains only small amount of surfactants and contaminants as the treated water. Most ASTP studies have used nonionic surfactants above the cloud point. Mixtures of anionic and cationic surfactants can also exhibit aqueous-aqueous phase separation and can be used in the ASTP extraction process. The phase behavior and performance of ASTP extraction using cationic surfactant dodecyltrimethylammonium bromide (DTAB) and anionic surfactant alkyldiphenyloxide di-sulfonate (DPDS) to extract benzene from wastewater was investigated in batch experiments. It was found that phase separation only occurs over a narrow range of molar ratios of DTAB:DPDS from 1.6:1 to 2.4:1. In this study, a 2:1 molar ratio of DTAB:DPDS at which there is no net charge in the surfactant aggregates show the highest extraction efficiency and lowest critical micelle concentration value with greatest synergism (highest negative values of the micellar interaction parameter). At a total surfactant concentration of 50mM, the benzene partition ratio is 48 and 72% of the benzene is extracted into the surfactant-rich phase solution in a single stage extraction, which is superior performance compared to ASTP extraction using nonionic surfactants.  相似文献   

6.
Previous research has demonstrated that an anionic surfactant can increase the solubility of the vapor phases of both naphthalene and sulfur dioxide in water. This study examines the feasibility of removing polycyclic aromatic hydrocarbons (PAHs) during gas absorption by adding the polyoxyethylenated nonionic surfactants tetraethylene glycol monodecyl ether (C10E4), octaethylene glycol monodecyl ether (C10E8), and octaethylene glycol monotetradecyl ether (C14E8), to water. The apparent solubility and absorption rates of naphthalene in surfactant solution were slightly higher than in pure water at a concentration lower than the critical micelle concentration (CMC). However, the apparent equilibrium naphthalene solubility increased linearly in proportion to the concentrations of nonionic surfactants because of the solubilization effect of micelles at concentrations above the CMC. The solubilization effect exceeded that of the reduced mass transfer coefficient, increasing the rate of absorption of vaporous naphthalene. For the four surfactants, the capacity to solubilize naphthalene was in the order C10E4 > C14E8 > C10E8 > sodium dodecyl sulfate (SDS) and was related to the hydrophile-lipophile balance values of the surfactants. The enrichment factors, which can express the degree of naphthalene solubility in solution, were 6.09-14.2 at a surfactant concentration of 0.01 M for the three polyoxyethylenated nonionic surfactants. Empirical findings confirm that adding nonionic surfactants increases the absorption efficiency of hydrophobic organic compounds (HOCs) using spray or packed tower.  相似文献   

7.
Bentonite was modified by quaternary ammonium cations viz. cetytrimethylammonium (CTA), cetylpyridinium (CP), rioctylmethylammonium (TOM) and pcholine (PTC) at 100% cation exchange capacity of bentonite and was characterized by X-ray diffraction, CHNS elemental analyser and Fourier transform infrared spectroscopy. The sorption of imidacloprid on organobentonites/bentonite was studied by batch method. Normal bentonite could adsorb imidacloprid only upto 19.31–22.18% while all organobentonites except PTC bentonite (PTCB), enhanced its adsorption by three to four times. Highest adsorption was observed in case of TOM bentonite (TOMB) (76.94–83.16%). Adsorption kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. For normal bentonite data were best fitted to pseudo-first-order kinetic, while for organobentonites fitted to pseudo-second-order kinetics. Sorption data were analysed using Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherm models. Data were well fitted to Freundlich adsorption isotherm. Product of Freundlich adsorption constant and heterogeneity parameter (Kf.1/n) was in following order: TOMB (301.87) > CTA bentonite (CTAB) (152.12) > CP bentonite (CPB) (92.58) > bentonite (27.25). Desorption study confirmed hysteresis and concentration dependence. The present study showed that the organobentonite could be a good sorbent for removal of imidacloprid from natural water sample also. Percentage adsorption and Distribution coefficient (mL g?1) value of different adsorbent was in following order: TOMB (74.85% and 297.54) > CTAB (55.78% and 126.15) > CPB (45.81% and 84.55) > bentonite (10.65% and 11.92).  相似文献   

8.
The objective of this study was to investigate the influence of salinity on the effectiveness of surfactants in the remediation of sediments contaminated with phenanthrene (PHE). This is an example of a more general application of surfactants in removing hydrophobic organic compounds (HOCs) from contaminated soil/sediment in saline environments via in-situ enhanced sorption or ex-situ soil washing. Salinity effects on surfactant micelle formation and PHE partitioning into solution surfactant micelles and sorbed surfactant were investigated. The critical micelle concentration of surfactants decreased, and PHE partition between surfactant micelles and water increased with increasing salinity. Carbon-normalized partition coefficients (Kss) of PHE onto the sorbed cationic surfactant increased significantly with increasing salinity, which illustrates a more pronounced immobilization of PHE by cationic surfactant in a saline system. Reduction of PHE sorption by anionic surfactant was more pronounced in the saline system, indicating that the anionic surfactant has a higher soil washing effectiveness in saline systems.  相似文献   

9.
BACKGROUND, AIM AND SCOPE: Pesticides are often found in soil as a result of their application to control pests. They can be transported on soil particles to surface waters or they can lixiviate and reach other environmental compartments. Soil modification with amendments, such as sewage sludge, and with surfactants, h been proposed to reduce pesticide environmental fate. METHODS: The sorption of atrazine, methidathion and diazinon using the batch technique has been studied on non-modified soil and soil modified with sewage sludge and cationic surfactants, as well as the effect of their addition on soil properties such as organic carbon (OC) content and exchange cations. RESULTS AND DISCUSSION: The OC content of the surfactant modified soils was the highest with the surfactant with the longest hydrocarbon chain (hexadecyltrimethyl ammonium bromide, HDTMA). The results of the OC content run in parallel with the increase in pesticide retention. When the sorption was n malized to soil OC content, the retention induced by addition of HDTMA was still the highest, which is an indication that the organic matter derived from the organic cations is a more effective medium to retain dissolved contaminants, than organic matter from native soil. The addition of sewage sludge to the soil did only result in a slight increase of the soil CEC and, hence, moderately affected the ability of the cationic surfactant to retain the pesticides. CONCLUSIONS: The addition of cationic surfactants to soil would possibly reduce the movement to groundwater of atrazine, methidathion and diazinon. In the case of HDTMA, the decrease in sorption at high surfactant loadings was very slow, being that the surfactant was able to retain the pesticides at concentration values which clearly exceeded the monolayer coverage. RECOMMENDATIONS AND PERSPECTIVES: Contamination by pesticides, which are present in the soil due to their direct input in this medium or to spills or illegal tipping, may be hindered from migration to groundwater by application of a cationic surfactant.  相似文献   

10.
Simultaneous sorption of lead and chlorobenzene by organobentonite   总被引:10,自引:0,他引:10  
Lee JJ  Choi J  Park JW 《Chemosphere》2002,49(10):1309-1315
Clays or organoclays have been used as a barrier to prevent the transport of hazardous contaminants in landfills. However, clays are known to effectively sorb mostly inorganic contaminants, while organoclays are mainly used for organic contaminants. Since the organoclays are basically clay particles modified with cationic surfactants, there might exist an optimal coverage of cationic surfactant on the clay particles to sorb both inorganic and organic contaminants. In order to determine the optimal mass of cationic surfactants on the bentonites, sodium bentonites were treated with various ratios of hexadecyltrimethylammonium (HDTMA) to bentonites. Chlorobenzene and lead were selected as representative contaminants. When either chlorobenzene or lead exists as a single contaminant, chlorobenzene sorption increased with increasing HDTMA to bentonite ratios, and lead sorption decreased with increasing HDTMA to bentonite ratios. Sorption of chlorobenzene was a function of HDTMA coverage on the bentonites, while lead sorption was much more influenced by the initial lead concentration rather than the mass of HDTMA added to the bentonites.  相似文献   

11.
Effect of surfactants on desorption of aldicarb from spiked soil   总被引:2,自引:0,他引:2  
Xu J  Yuan X  Dai S 《Chemosphere》2006,62(10):1630-1635
Surfactant enhanced desorption of aldicarb from spiked soil was investigated in this paper. Anionic (sodium dodecyl benzene sulphonate, SDBS), cationic (hexadecyl trimethyl ammonium bromide, HTAB) and nonionic (octyl polyethylene glycol phenyl ether, OP) surfactants were tested to determine their optimal desorption conditions including desorption time, mixing speed and surfactant concentrations. The results showed that the optimal operating conditions were obtained at 2 h, 150 rpm, and surfactants concentrations were 1000, 100, and 200 mg l(-1) for SDBS, OP, and HTAB, respectively. The paper also investigated the desorption efficiency of mixture of different kinds of surfactants for aldicarb-spiked soil, and found that anionic-nonionic surfactant mixtures gave the best desorption efficiency up to 77%, while anionic-cationic surfactant mixture gave a poor desorption efficiency similar to water, suggesting that mixture of anionic-nonionic surfactants were highly promising on remediation of aldicarb-contaminated soil.  相似文献   

12.
Lippold H  Gottschalch U  Kupsch H 《Chemosphere》2008,70(11):1979-1986
Mobilization of polycyclic aromatic hydrocarbons (PAH) by surfactants, present at contaminated sites or deliberately introduced for remediation purposes, is inevitably associated with the influence of humic substances, which are ubiquitous in natural systems. Therefore, the solubilizing effects of anthropogenic and natural amphiphiles must be considered in their combined action since synergistic or antagonistic effects may be expected, for instance, as a consequence of mixed micellization.

In this paper, solubilization of 14C-labeled pyrene in single-component and mixed solutions of surfactants and humic acid (coal-derived) was investigated up to the micellar concentration range. At low concentrations, antagonistic effects were observed for systems with cationic as well as anionic surfactants. Solubility enhancements in the presence of humic acid were canceled on addition of a cationic surfactant (DTAB) since charge compensation at humic colloids entailed precipitation. Solubility was also found to be decreased in the presence of an anionic surfactant (SDS), which was attributed to a competitive effect in respect of pyrene–humic interaction. This explanation is based on octanol–water partitioning experiments with radiolabeled humic acid, yielding evidence of different interaction modes between humic colloids and cationic/anionic surfactants. At higher concentrations, the effects of humic acid and SDS were found to be additive. Thus, a formation of mixed micelles is very unlikely, which was confirmed by size exclusion chromatography of mixed systems. It can be concluded that remediation measures on the basis of micellar solubilization are not significantly affected by the presence of natural amphiphilic compounds.  相似文献   


13.
14.
15.
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.  相似文献   

16.
A series of experiments were carried out to determine the effect of surfactants at low concentrations on the sorption of atrazine by natural sediments. With surfactant concentrations ranging from 0 to 20 mg/ L, anionic and cationic surfactants appreciably reduce the adsorption of atrazine, while nonionic surfactant decreases the adsorption of atrazine at concentrations equal to or less than 1 mg/L and increases adsorption at higher concentrations. Desorption of atrazine in the presence of different sodium dodecylbenzene sulfonate (SDBS) concentrations shows that a portion of the bound pesticide resists desorption in the SDBS free system. However, the addition of SDBS accelerates the desorption of atrazine. Furthermore, the nature of sediment and the contacting sequence of SDBS, at 10 mg/L, with the sediment, also influence the adsorption of atrazine. The conclusions in this study could be explained partially by the effect of the type and concentration of surfactants and the characteristics of sediments.  相似文献   

17.
Sorption of hydrophobic organic compounds onto organoclays   总被引:2,自引:0,他引:2  
Lee SY  Kim SJ  Chung SY  Jeong CH 《Chemosphere》2004,55(5):781-785
The behavior and fate of nonionic hydrophobic organic compounds (HOCs) in the environment are mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of the contaminants in the environment. In our experiments, HOC sorption by hexadecyltrimethylammonium (HDTMA)-modified smectite linearly increased with the amount of HDTMA added to the clay. However, tetramethylammonium (TMA)- and dodecyltrimethylammonium (DTMA)-modified smectites showed not only inferiority in their sorption of HOC compared with the HDTMA-smectite, but also a partially decreased HOC sorption at specific surfactant loading levels. This means that the sorption of organoclays for organic contaminants was significantly influenced by the amount and size of the surfactants added on the clay. In addition, it seems that the interlayer structure (e.g., pore size) formed at each surfactant loading level plays an important role to adsorb HOC in different amount.  相似文献   

18.
采用截留分子量(MWCO)为5000 Dalton、1000 Dalton的聚砜超滤膜,MWCO为1 kDa的再生纤维素超滤膜;采用十二烷基苯磺酸钠(SDBS)、曲拉通100(TritonX-100)、吐温80(Tween-80)、烷基多苷(APG)为表面活性剂,用胶团强化超滤工艺去除水中双酚A。研究了不同材质和截留分子量的超滤膜、表面活性剂浓度、膜操作压力、溶液pH和溶液中电解质等因素对该工艺的影响。结果表明,SDBS对双酚A有较好的去除效果,去除率在80%以上。在H+和Na+存在的条件下,双酚A的截留率增加,透过液中SDBS浓度降低。SDBS与非离子表面活性剂的复配可以提高双酚A截留率,降低透过液中SDBS的浓度,复配效果优劣顺序为Tween-80TritonX-100APG。  相似文献   

19.
Trapped organic solvents, in both the vadose zone and below the water table, are frequent sources of environmental contamination. A common source of organic solvent contamination is spills, leaks, and improper solvent disposal associated with dry cleaning processes. Dry cleaning solvents, such as tetrachloroethylene (PCE), are typically enhanced with the addition of surfactants to improve cleaning performance. The objective of this work was to examine the partitioning behavior of surfactants from PCE in contact with water. The relative rates of surfactants partitioning and PCE dissolution are important for modeling the behavior of waste PCE in the subsurface, in that they influence the interfacial tension of the PCE, and how (or if) interfacial tension changes over time in the subsurface. The work described here uses a flow-through system to examine simultaneous partitioning and PCE dissolution in a porous medium. Results indicate that both nonylphenol ethoxylate nonionic surfactants and a sulfosuccinate anionic surfactant partition out of residual PCE much more rapidly than the PCE dissolves, suggesting that in many cases interfacial tension changes caused by partitioning may influence infiltration and distribution of PCE in the subsurface. Non-steady-state partitioning is found to be well-described by a linear driving force model incorporating measured surfactant partition coefficients.  相似文献   

20.
Zhou W  Zhu L 《Chemosphere》2005,60(9):1237-1245
The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil-water system was studied on a natural soil. The apparent soil-water distribution coefficient with surfactant (Kd*) for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in Kd* at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient (Kss) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter (Koc), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When Kd* = Kd the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of Kd* and CWC can be predicted by a model, which correlates them with the compounds' octanol-water partition coefficients (Kow), soil property and the amount of soil-sorbed surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号