首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Knowledge of headwater influences on the water‐quality and flow conditions of downstream waters is essential to water‐resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water‐quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass‐balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water‐quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first‐order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first‐order headwaters contribute approximately 70% of the mean‐annual water volume and 65% of the nitrogen flux in second‐order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth‐ and higher‐order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water‐resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters.  相似文献   

2.
As part of a comparative watershed project investigating land-cover/land-use disturbance gradients for streams in the western Lake Superior Basin, we examined general relationships between landscape character and fish assemblage structure and function. We also examined the shape of those relationships to identify discontinuity thresholds where small changes in landscape character were associated with marked shifts in the fish assemblages. After completing a geographic analysis of second- and third-order watersheds in the western Lake Superior drainage, we randomly selected 48 streams along mature forest and watershed storage gradients in 2 hydrogeomorphic regions as our study sites. During the summers of 1997 and 1998, we used electrofishing to sample fish assemblages from each stream. Each of the landscape factors was significantly associated with fish assemblage structure and function based on analysis of covariance. Watershed storage was related to the greatest number of fish assemblage characteristics, but hydrogeopmorphic region and mature forest cover were strongly associated as well. The hydrogeomorphic region also mediated relationships between watershed character and fish assemblages. Discontinuity thresholds for our fish assemblages averaged 11% for watershed storage and 50% for watershed mature forest cover based on piecewise regression analysis. Although many of the landscape–fish relationships might have been manifest through effects on in-stream habitat, our results highlight the importance of management and land-use planning decisions at the watershed and landscape scales.Published online  相似文献   

3.
Understanding spatial variability in contaminant fate and transport is critical to efficient regional water‐quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.  相似文献   

4.
Fox, James F., Charles M. Davis, and Darren K. Martin, 2010. Sediment Source Assessment in a Lowland Watershed Using Nitrogen Stable Isotopes. Journal of the American Water Resources Association (JAWRA) 46(6):1192–1204. DOI: 10.1111/j.1752-1688.2010.00485.x Abstract: Sediment sources and transported sediments were sampled in a lowland watershed with pronounced fine sediment storage in the streambed. Sediments were analyzed for carbon and nitrogen content and stable nitrogen isotopic composition. Analysis of the data shows that temporarily stored streambed sediments dominate the sediment load during moderate- and low-flow hydrologic events. Modeling of sediment transport and nitrogen elemental and isotopic mass balance was performed for the watershed for a 12-month time period using a continuous, conceptual-based model. The model results show that during moderate- and low-flow hydrologic events, the streambed is slowly downcutting. During very high-flow hydrologic events, deposition is pronounced in the streambed and sediment is replenished to the bed. Nitrogen model results show that elemental and isotopic nitrogen of streambed sediments vary substantially over the simulation period. In this manner, the streambed in a lowland watershed functions as a temporary storage zone that, in turn, can impact the nitrogen elemental and isotopic signature of sediments. The variation could significantly impact estimates of sediment provenance using nitrogen tracer-based methods. Future work should consider both hydrologic and biogeochemical control on the nitrogen isotopic signature of sediments in small lowland watersheds and streams where a significant portion of deposited fines are temporarily stored.  相似文献   

5.
Watershed-wide land-cover proportions can be used to predict the in-stream non–point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to explore the fundamental mechanism.  相似文献   

6.
7.
Understanding trends in stream chemistry is critical to watershed management, and often complicated by multiple contaminant sources and landscape conditions changing over varying time scales. We adapted spatially referenced regression (SPARROW) to infer causes of recent nutrient trends in Chesapeake Bay tributaries by relating observed fluxes during 1992, 2002, and 2012 to contemporary inputs and watershed conditions. The annual flow‐normalized nitrogen flux to the bay from its watershed declined by 14% to 127,000 Mg (metric tons) between 1992 and 2012, due primarily (more than 80% of the decline) to reduced point sources. The remainder of the decline was due to reduced atmospheric deposition (13%) and urban nonpoint sources. Agricultural inputs, which contribute most nitrogen to the bay, changed little, although trends in the average nitrogen yield (flux per unit area) from cropland and pasture to streams in some settings suggest possible effects of evolving nutrient applications or other land management practices. Point sources of phosphorus to local streams declined by half between 1992 and 2012, while nonpoint inputs were relatively unchanged. Annual phosphorus delivery to the bay increased by 9% to 9,570 Mg between 1992 and 2012, however, due mainly to reduced retention in the Susquehanna River at Conowingo Reservoir.  相似文献   

8.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   

9.
Red alder (Alnus rubra), a nitrogen(N)‐fixing deciduous broadleaf tree, can strongly influence N concentrations in western Oregon and Washington. We compiled a database of stream N and GIS‐derived landscape characteristics in order to examine geographic variation in N across the Oregon Coast Range. Basal area of alder, expressed as a percent of watershed area, accounted for 37% and 38% of the variation in summer nitrate and total N (TN) concentrations, respectively. Relationships between alder and nitrate were strongest in winter when streamflow and landscape connections are highest. Distance to the coast and latitude, potential surrogates for sea salt inputs, and watershed area were also related to nitrate concentrations in an all‐subsets regression analysis, which accounted for 46% of the variation in summer nitrate concentrations. The model with the lowest Akaike's Information Criterion did not include developed or agricultural land cover, probably because few watersheds in our database had substantial levels of these land cover classes. Our results provide evidence, at a regional scale, that background sources and processes cause many Coast Range streams to exceed proposed nutrient criteria, and that the prevalence of a single tree species (N‐fixing red alder) exerts a dominant control over stream N concentrations across this region.  相似文献   

10.
Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.  相似文献   

11.
Our lack of understanding of relationships between stream biotic communities and surrounding landscape conditions makes it difficult to determine the spatial scale at which management practices are best assessed. We investigated these relationships in the Minnesota River Basin, which is divided into major watersheds and agroecoregions which are based on soil type, geologic parent material, landscape slope steepness, and climatic factors affecting crop productivity. We collected macroinvertebrate and stream habitat data from 68 tributaries among three major watersheds and two agroecoregions. We tested the effectiveness of the two landscape classification systems (i.e., watershed, agroecoregion) in explaining variance in habitat and macroinvertebrate metrics, and analyzed the relative influence on macroinvertebrates of local habitat versus regional characteristics. Macroinvertebrate community composition was most strongly influenced by local habitat; the variance in habitat conditions was best explained at the scale of intersection of major watershed and agroecoregion (i.e., stream habitat conditions were most homogeneous within the physical regions of intersection of these two landscape classification systems). Our results are consistent with findings of other authors that most variation in macroinvertebrate community data from large agricultural catchments is attributable to local physical conditions. Our results are the first to test the hypothesis and demonstrate that the scale of intersection best explains these variances. The results suggest that management practices adjusted for both watershed and ecoregion characteristics, with the goal of improving physical habitat characteristics of local streams, may lead to better basin-wide water quality conditions and stream biological integrity.  相似文献   

12.
Impacts of sediments and heavy metals on the biota of streams in the copper-mining district of southwestern Montana were examined by comparing aquatic communities of impacted streams with those of control streams. Control streams were chosen through the use of a technique that identifies similar streams based on similarities in their watershed characteristics. Significant differences between impacted and control sites existed for surface substrate, riparian vegetation, and the number of macroinvertebrate taxa. These results revealed that: (a) chemical and physical habitats at the impacted sites were disrupted, (b) the presence of trout was an inadequate measure of ecological integrity for these sites, and (c) watershed classification based on a combination of mapped terrestrial characteristics provided a reasonable method to select control sites where potential control sites upstream and downstream were unsuitable.  相似文献   

13.
Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.  相似文献   

14.
Evaluation of a denitrification wall to reduce surface water nitrogen loads   总被引:1,自引:0,他引:1  
Denitrification walls have significantly reduced nitrogen concentrations in groundwater for at least 15 yr. This has spurred interest in developing methods to efficiently increase capture volume to reduce N loads in larger watersheds. The objective of this study was to maximize treatment volume by locating a wall where a large groundwatershed was funneled toward seepage slope headwaters. Nitrogen concentration and load were measured before and after wall installation in paired treatment and control streams. Beginning 2 d after installation, nitrogen concentration in the treatment stream declined from 6.7 ± 1.2 to 3.9 ± 0.78 mg L and total N loading rate declined by 65% (391 kg yr) with no corresponding decline in the control watershed. This wall, which only comprised 10 to 11% of the edge of field area that contributed to the treatment watershed, treated approximately 60% of the stream discharge, which confirmed the targeted approach. The total load reduction measured in the stream 155 m downstream from the wall (340 kg yr) was higher than that found in another study that measured load reductions in groundwater wells immediately around the wall (228 kg yr). This indicated the possibility of an extended impact on denitrification from carbon exported beyond the wall. This extended impact was inauspiciously confirmed when oxygen levels at the stream headwaters temporarily declined for 50 d. This research indicates that targeting walls adjacent to streams can effectively reduce N loading in receiving waters, although with a potentially short-term impact on water quality.  相似文献   

15.
On-site septic systems require appropriate soil characteristics to provide effective wastewater treatment. The objective of this study was to evaluate siting practices and treatment efficacy of on-site septic systems within the Cannonsville Reservoir watershed (115900 ha) in the state of New York. Using digital soil survey data, a database of on-site conditions was developed from more than 1100 existing septic system siting records. Soil map units were grouped into four classes based on their suitability to meet common septic system design criteria. A geographic information system was found to be a useful tool for assessment and visual display of septic system and landscape information. Geographic information system analysis indicated that while 80% of soils in the watershed were found to have characteristics that interfere with septic system function, 69% of septic systems installed were of designs suited for soils with no or few restrictive parameters. Since the designs of many septic systems have relied heavily on horizontal distance to streams (mean = 130 m) to provide adequate treatment, potential failures would lead to discharge of compounds of environmental concern, such as phosphorus, with public health implications. The results imply that many septic systems functioning in the watershed are in need of design improvements.  相似文献   

16.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

17.
Watershed vulnerability predictions for the Ozarks using landscape models   总被引:1,自引:0,他引:1  
Forty-six broad-scale landscape metrics derived from commonly used landscape metrics were used to develop potential indicators of total phosphorus (TP) concentration, total ammonia (TA) concentration, and Escherichia coli bacteria count among 244 sub-watersheds of the Upper White River (Ozark Mountains, USA). Indicator models were developed by correlating field-based water quality measurements and contemporaneous remote-sensing-based ecological metrics using partial least squares (PLS) analyses. The TP PLS model resulted in one significant factor explaining 91% of the variability in surface water TP concentrations. Among the 18 contributing landscape model variables for the TP PLS model, the proportions of a sub-watershed that are barren and in human use were key indicators of water chemistry in the associated sub-watersheds. The increased presence and reduced fragmentation of forested areas are negatively correlated with TP concentrations in associated sub-watersheds, particularly within close proximity to rivers and streams. The TA PLS model resulted in one significant factor explaining 93% of the variability in surface water TA concentrations. The eight contributing landscape model variables for the TA PLS model were among the same forest and urban metrics for the TP model, with a similar spatial gradient trend in relationship to distance from streams and rivers within a sub-watershed. The E. coli PLS model resulted in two significant factors explaining 99.7% of the variability in E. coli cell count. The 17 contributing landscape model variables for the E. coli PLS model were similar to the TP and TA models. The integration of model results demonstrates that forest, riparian, and urban attributes of sub-watersheds affect all three models. The results provide watershed managers in the Ozark Mountains with a broad-scale vulnerability prediction tool, focusing on TP, TA, and E. coli, and are being used to prioritize and evaluate monitoring and restoration efforts in the vicinity of the White River, a major tributary to the Mississippi River and Gulf of Mexico.  相似文献   

18.
The Stream Performance Assessment (SPA), a new rapid assessment method, was applied to 93 restored, 21 impaired, 29 reference, and 13 reference streams with some incision throughout North Carolina. Principal component analysis (PCA) indicated restored streams align more closely with reference streams rather than impaired streams. Further, PCA‐based factor analysis revealed restored streams were similar to reference streams in terms of morphologic condition, but exhibited a greater range of scores relative to aquatic habitat and bedform. Macroinvertebrate sampling and GIS watershed analyses were conducted on 84 restored streams. SPA and watershed data were compared to Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa to determine which factors indicate stream health. SPA and watershed factors were used in least squares, ridge, and principal component regression (PCR) to develop a prediction model for EPT taxa. All three methods produced reasonable predictions for EPT taxa. Cross‐validation indicated ridge regression resulted in the lowest prediction error. The ridge model was then used to predict EPT taxa numbers for 21 impaired and 25 reference streams in addition to the 84 restored streams. Statistical comparisons of the predicted scores indicated urban streams (>10% impervious watershed cover) have lower expected numbers of EPT taxa. Rural restored streams have macroinvertebrate metric scores similar to those predicted for rural reference streams.  相似文献   

19.
Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its ecosystem services.  相似文献   

20.
ABSTRACT: A regional assessment of water quality in small streams was conducted within four areas of distinct physiography and lithology in the upper Potomac River Basin. The Potomac River is a major tributary to the Chesapeake Bay, and this study provides new insight on the relationships between nutrient concentrations in small streams and watershed characteristics within this river basin. Nutrient concentrations were compared to land-use data including categories for agriculture (cropland and pasture), urban areas, and forests. Among agricultural areas, streams draining areas of intense row cropping typically contained higher nitrate concentrations than did those draining pastures. Streams draining forested areas typically had the lowest nutrient concentrations. Streams in areas underlain by carbonate bedrock were more likely to contain elevated concentrations of inorganic nitrogen and potassium than did streams in areas underlain by fractured siliciclastic or crystalline rocks, and we suggest that this is a physical phenomenon related to high hydraulic conductivities in carbonate ground-water systems. The median nitrate concentrations were highest in the Great Valley portion of the Valley and Ridge physiographic province, particularly in watersheds that have both carbonate bedrock and intensive row cropping. Values of nitrate in these streams ranged up to 8.99 mg/L as nitrogen. The soluble phosphorus concentrations during baseflow were generally low in all sub-units, even in some settings with potential for high phosphorus inputs such as urban areas with municipal point sources or agricultural areas. The mobility of phosphorus in these environments may be hindered by adsorption and geochemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号