首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Electrocoagulation with aluminum electrodes was used to treat the vegetable oil refinery wastewater (VORW) in a batch reactor. The effects of operating parameters such as pH, current density, PAC (poly aluminum chloride) dosage and Na(2)SO(4) dosage on the removal of organics and COD removal efficiency have been investigated. It has been shown that the removal efficiency of COD increased with the increasing applied current density and increasing PAC and Na(2)SO(4) dosage and the most effective removal capacity was achieved at the pH 7. The results indicate that electrocoagulation is very efficient and able to achieve 98.9% COD removal in 90 min at 35 mAcm(-2) with a specific electrical energy consumption of 42 kWh(kgCOD(removed))(-1). The effluent was very clear and its quality exceeded the direct discharge standard.  相似文献   

2.
Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively.  相似文献   

3.
Industrialization plays a major role in a nation's growth. However, with an increase in industrial activities, pollution levels are also increasing. Among all industries, the sugar‐processing industry is one that requires large amounts of water to process the sugar, and, consequently, it discharges large amounts of water as effluent. Highly polluted wastewater brings changes to the physicochemical characteristics of the surrounding environment. Iron compounds have had a significant impact when they are used in wastewater treatment in various applications, including when they are used to minimize the pollution levels in sugar industry wastewater (SIWW). To minimize the pollutant levels from SIWW, iron compounds have been key for uses in treatments involving chemical and electro‐oxidation. Two different methodologies of electrocoagulation and chemical coagulation have been used to treat SIWW. In electrocoagulation, an iron plate is used as an electrode material under specific operating conditions. Ferrous sulfate and ferric chloride have been used as chemical coagulants at various pH and mass loading levels. The use of iron metals shows an 82% reduction in chemical oxygen demand (COD) and an 84% reduction in color at the optimum condition of pH 6, an electrode distance of 20 millimeters, and a current density of 156 square centimeters. As a chemical coagulant, iron salt (ferrous sulfate) provides a reduction of 77% COD and a 91% reduction of color at pH 6 and a 40‐millimole mass loading. Electrochemical treatment using iron was found to be suitable to treat SIWW. The sludge generated after treatment can be burned or composted with the possible recovery of some of the treatment costs.  相似文献   

4.
Long-term consumption of water containing excessive fluoride can lead to fluorosis of the teeth and bones. Electrocoagulation (EC) is an electrochemical technique, in which a variety of unwanted dissolved particles and suspended matter can be effectively removed from an aqueous solution by electrolysis. Continuous flow experiments with monopolar aluminium electrodes for fluoride removal were undertaken to investigate the effects of the different parameters such as: current density (12.5-50A/m(2)), flow rate (150-400 mL/min), initial pH (4-8), and initial fluoride concentration (5-25mg/L). The highest treatment efficiency was obtained for the largest current and the removal efficiency was found to be dependent on the current density, the flow rate and the initial fluoride concentration when the final pH ranged between 6 and 8. The composition of the sludge produced was analysed using the X-ray diffraction (XRD) spectrum. The strong presence of the aluminium hydroxide [Al(OH)(3)] in the above pH range, which maximizes the formation of aluminium fluoride hydroxide complex [Al(n)F(m)(OH)(3n-m)], is the main reason for defluoridation by electrocoagulation. The results obtained showed that the continuous flow electrocoagulation technology is an effective process for defluoridation of potable water supplies and could also be utilized for the defluoridation of industrial wastewater.  相似文献   

5.
This study investigated the efficiency of electrocoagulation in removing color from synthetic and real textile wastewater. Two representative dye molecules were selected for the synthetic dye wastewater: a blue reactive dye (Reactive Blue 140) and a disperse dye (Disperse Red 1). The electrochemical technique showed satisfactory color removal efficiency and reliable performance in treating both individual and mixed dye types. The removal efficiency and energy consumption data showed that, for a given current density, iron was superior to aluminum in treating both the reactive dye and the disperse dye. With an initial dye concentration of 100 mg L?1, the energy cost in achieving >95% color removal was on the order of 1 kWh m?3 for both dyes. The effect of changing the initial pH of the samples on the removal efficiency and energy consumption was also studied. It was found that the design parameters used for the synthetic wastewater were less effective for treatment of real textile wastewater, with 1 in 5 tests on real wastewater failing.  相似文献   

6.
采用将脱硫废液与炼油废水按比例混合之后对其进行处理的方法,通过批式试验,考查混合废液的BOD5/COD指标及其COD、NH3-N、S2-的去除率。筛选合适的混合液配比,分别对500︰1和800︰1的混合废液进行了模型试验,分析了COD去除效果。结果表明:800︰1的混合废液在10d之后,出水COD为134mg/L,达到了《污水综合排放标准》(GB8978—1996)二级标准要求。最终确定炼油废水与脱硫废液混合的合适比例应不低于800︰1。  相似文献   

7.
Chemical, electrochemical and flow variables were optimized to examine the effectiveness of the electrocoagulation process for the removal of copper, lead and cadmium. The electrochemical process, which uses electrodes of commercial laminate steel, was applied to simulated wastewater containing 12 mg dm(-3) of copper, 4 mg dm(-3) of lead and 4 mg dm(-3) of cadmium. The optimum conditions for the process were identified as pH=7, flow rate=6.3 cm(3) min(-1) and a current density between 31 and 54 A m(-2). When the electrode geometric area and time of electrolysis reached critical values, the copper removal reached a maximum value of 80%. A linear relationship was identified between the current density and the mass of generated sludge. In addition, a linear relationship was found between specific energy consumption and current density. The results of this investigation provide important data for the development of an industrial-scale electrolytic reactor.  相似文献   

8.
我国粉煤灰和铝、铁片固体废物产量日益增多,危害越来越严重。在高温加热、搅拌条件下,用强酸浸渍粉煤灰和易拉罐碎片,使粉煤灰和废旧铝、铁片资源化,制得废旧铝、铁片粉煤灰复合混凝剂,并用所制得的废旧铝、铁片粉煤灰复合混凝剂处理屠宰废水。在一定条件下,经混凝试验处理后的屠宰废水pH值在7左右,COD去除率为92.0%,SS去除率为98.7%,浊度去除率为98.4%,色度去除率为96.6%。结果表明,粉煤灰和废旧铝、铁片资源化和在废水处理中的应用具有可行性。  相似文献   

9.
This study aims to investigate the treatment of paper mill effluents using electrocoagulation. Removal of lignin, phenol, chemical oxygen demand (COD) and biological oxygen demand (BOD) from paper mill effluents was investigated at various current intensities by using different electrodes (Al and Fe) and at various electrolysis times (1.0, 2.5, 5.0 and 7.5min). It was observed that the experiments carried out at 12V, an electrolysis time of 2min and a current intensity of 77.13mA were sufficient for the removal of these pollutants with each electrode. The removal capacities of the process using an Al electrode were 80% of lignin, 98% of phenol, 70% of BOD, and 75% of COD after 7.5min. Using an Fe electrode the removal capacities were 92%, 93%, 80% and 55%, respectively. In addition, it was found that removal of lignin, phenol, BOD and COD increased with increasing current intensity. In the experiments carried out at different current intensities, higher removal can be explained through a decrease in intra-resistance of solution and consequently an increase at the transfer speed of organic species to electrodes. It was also found that Al electrode performs higher efficiency than Fe electrode except for COD removal. However, the time required for removal of BOD was more than that of COD. The results suggest that electrocoagulation could be considered as an effective alternative to paper mill effluents treatment.  相似文献   

10.
The main objective of this paper was to perform a preliminary comparative study between chemical and electrochemical coagulation processes, both followed by flocculation and sedimentation of an effluent from an upflow anaerobic sludge blanket (UASB) reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrochemical treatment removed up to 67% (with aluminum electrodes) and 82% (with stainless-steel electrodes) of the remaining chemical oxygen demand (COD) and 84% (stainless steel) and 98% (aluminum) of the color in the wastewater. These efficiencies were achieved with an energy consumption ranging from 14 to 20 Wh l(-1). The coagulation-flocculation treatment with ferric chloride and aluminum sulfate removed up to 87% and 90% of COD and 94% and 98% of color, respectively. The addition of a high molecular weight cationic polymer enhanced both COD and color removal efficiencies. The two post-treatment processes proved to be technically feasible; however the economical feasibility could not be assessed since the experiments were performed with small reactors that could distort scale factors.  相似文献   

11.
归纳分析了两种硫酸盐废水的厌氧处理相关的研究数据和结果,着重阐述了碳硫比值、硫酸盐负荷率、pH等因子对系统的影响。  相似文献   

12.
聚合硅酸硫酸铝对印染废水的预处理实验研究   总被引:1,自引:0,他引:1  
本文采用硅酸钠、硫酸和硫酸铝为原料,制备出无机高分子絮凝剂聚合硅酸硫酸铝,探讨了聚合硅酸硫酸铝对广东某毛纺企业印染废水的应用性能。结果表明,聚合硅酸硫酸铝对COD和色度的去除率优于硫酸亚铁,COD和色度去除率分别可达31.8%和84%,减轻了后续生化系统的压力。  相似文献   

13.
实验考察了深度处理后的炼油污水用于锅炉时的性能状况,分析了污水化学需氧量(COD)、硬度对树脂吸附脱氨性能的影响。研究表明,在对炼油污水进行深度处理时,污水的COD、硬度严重影响树脂对氨、氮的吸附。树脂对硬度的吸附率高于对氨、氮的吸附率,稳态时树脂能使COD降低60%。树脂脱氨不适合于对炼油废水深度处理时作为脱氨的主要工艺,应置于深度处理的后段。氨、氮量及COD均被有效地降低后,再对水的硬度进行处理。  相似文献   

14.
复合絮凝剂PSCM的制备及性能研究   总被引:2,自引:0,他引:2  
以聚硅酸(PSA)、硫酸铝(AS)、非离子型聚丙烯酰胺(N—PAM)为原料,制备了无机高分子复合絮凝剂PSCM。考察了投药量、铝与硅摩尔比、水样pH值等因素对絮凝效果的影响。结果表明,添加少量的N—PAM有助于改善絮凝剂的絮凝效果。与聚合硫酸铝硅(PSAS)相比,PSCM有较宽的pH适用范围,絮体颗粒粗大、密实,沉降速度快,剩余浊度低。  相似文献   

15.
絮凝- 电气浮法处理乳化油废水   总被引:2,自引:0,他引:2  
含乳化油废水由于表面活性剂的存在处理难度较大。通过絮凝——电气浮方法处理乳化油废水,确定絮凝及絮凝——电气浮所需的最佳絮凝剂用量;通过正交试验考察了pH值、电流密度、电极间距及气浮时间等操作参数的影响,得到絮凝一电气浮的最优操作条件为电流密度为20.83A/m^2,电极间距为1cm,pH值为7.4。在聚合硫酸铁投加量为50mg/L,电气浮30min时COD去除率可达95.2%。此方法对轴承厂废水的COD去除率可达75%,出水COD可降至91.9mg/L。结果表明用这种方法处理乳化油废水是可行的。  相似文献   

16.
在实验装置上对电化学法处理苯胺废水进行研究。根据不同电极材料对有机物降解机理的不同,对工业上应用较为广泛的几种电极材料进行筛选,并在此基础上考察了电流密度、投盐量、pH值、极间距、处理水量、电解时间等因素对处理结果的影响。结果表明:当用Ti/PbO2作电极,在电极间距为10mm,电流密度10mA/cm2,硫酸钠投加量1.5g/L,水板比8.3mL/cm2的条件下电解120min,废水中苯胺去除率可达94%以上,电解150min,溶液中的苯胺几乎完全降解。  相似文献   

17.
研究了在单独电解作用下及超声辐射.电解联合作用下,降解马拉硫磷农药废水的不同效果,详细探讨了电解时间、酸碱性、电压、电流及加入电解质的量等因素对结果的影响。实验结果表明,马拉硫磷农药废水在电解单独作用下,COD去除率可达到86.86%;在超声辐射-电解联合作用下,COD去除率可达到91.53%。  相似文献   

18.
Treatment of low-strength soluble wastewater (COD approximately 500 mg/L) was studied using an eight chambered anaerobic baffled reactor (ABR). At pseudo steady-state (PSS), the average total and soluble COD values (COD(T) and COD(S)) at 8h hydraulic retention time (HRT) were found to be around 50 and 40 mg/L, respectively, while at 10h HRT average COD(T) and COD(S) values were of the order of 47 and 37 mg/L, respectively. COD and BOD (3 day, 27 degrees C) removal averaged more than 90%. Effluent conformed to Indian standards laid down for BOD (less than 30 mg/L). Reactor effluent characteristics exhibited very low values of standard deviation indicating excellent reactor stability at PSS in terms of effluent characteristics. Based on mass balance calculations, more than 60% of raw wastewater COD was estimated to be recovered as CH(4) in the gas phase. Compartment-wise profiles indicated that most of the BOD and COD got reduced in the initial compartments only. Sudden drop in pH (7.8-6.7) and formation of volatile fatty acids (VFA) (53-85 mg/L) were observed in the first compartment due to acidogenesis and acetogenesis. The pH increased and VFA concentration decreased longitudinally down the reactor. Residence time distribution (RTD) studies revealed that the flow pattern in the ABR was neither completely plug-flow nor perfectly mixed. Observations from scanning electron micrographs (SEM) suggest that distinct phase separation takes place in an ABR.  相似文献   

19.
双极铝电极电凝聚除氟研究   总被引:1,自引:1,他引:0  
一种投资不大的脱氟方法——双极铝电极电凝聚脱氟法,用模拟水样研究电极间距、氟化物浓度、温度以及溶液的pH值对电凝聚的影响,并对其优化条件进行了探讨。同时,用南阿尔及利亚水样讨论了电流密度和面积/体积比率对脱氟作用的影响。研究表明:用双极铝电极电凝聚法去除撒哈拉水中的氟化物不需加可溶性盐。铝与氟化物的质量比为17:1。  相似文献   

20.
在已开发的含油废水处理装置的基础上,对其整体结构、旋分分离部分进行改进,并筛选出性能优良的填料。将原处理装置的单向旋分器改进为双向旋分器、采用YS填料之后,对石油类浓度低于400mg/L的含油废水,经该装置处理后,石油类的去除率达到90%以上;石油类浓度低于80mg/L的含油废水,经该装置处理后,石油类的去除率达95%,石油类的浓度小于10mg/L,达到国家《污水综合排放标准》(GB8798-1996)二级标准的要求。改进后的装置对高、中、低不同浓度石油类的含油废水均有较好的处理效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号