首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a biofiltration model including the effect of biomass accumulation and inert biomass growth is developed to simultaneously predict the Volatile Organic Compounds (VOCs) removal and filter bed pressure drop under varied inlet loadings. A laboratory-scale experimental biofilter for gaseous toluene removal was set up and operated for 100 days with inlet toluene concentration ranging from 250 to 2500 mg?m-3. According to sensitivity analysis based on the model, the VOCs removal efficiency of the biofilter is more sensitive to Henry’s constant, the specific surface area of the filter bed and the thickness of water layer, while the filter bed pressure drop is more sensitive to biomass yield coefficient and original void fraction. The calculated toluene removal efficiency and bed pressure drop satisfactorily fit the experimental data under varied inlet toluene loadings, which indicates the model in this study can be used to predict VOCs removal and bed pressure drop simultaneously. Based on the model, the effect of mass-transfer parameters on VOCs removal and the stable-run time of a biofilter are analyzed. The results demonstrate that the model can function as a good tool to evaluate the effect of biomass accumulation and optimize the design and operation of biofilters.  相似文献   

2.
A conceptual mathematical model was used to evaluate the design parameters of a combined ultraviolet (UV)-biofilter system, and perform a cost analysis. Results showed that the UV light source strength and the gas residence times in the UV system (UVRT) and biofilter (EBRT) had positive effects on the overall chlorobenzene removal efficiency of the system. High ratio of UVRT to EBRT improved the removal efficiency, suggesting that the UV system has a greater effect on the overall performance of the system compared with the biofilter. Analysis of the capital and operating costs showed that the capital costs of the standalone biofilter system were much higher than those of the standalone UV system. However, the biofilter operating costs were lower than those of the UV system. The operating costs of the combined UV-biofilter system increased with increasing UVRT/EBRT ratio, whereas its capital costs decreased.  相似文献   

3.
To select the best available packing material for malodorous organic gases such as toluene and benzene, biofilter performance was compared in biofilters employed different packing materials including porous ceramic (celite), Jeju scoria (lava), a mixture of granular activated carbon (GAC) and celite (GAC/celite), and cubic polyurethane foam (PU). A toluene-degrading bacterium, Stenotrophomonas maltophilia T3-c, was used as the inoculum. The maximum elimination capacities in the celite, lava, and GAC/celite biofilters were 100, 130, and 110 gm(-3) hr(-1), respectively. The elimination capacity for the PU biofilter was approximately 350 g m(-3) hr(-1) at an inlet loading of approximately 430 g m(-3) hr(-1), which was 2 to 3.5 times higher than for the other biofilters. The pressure drop gradually increased in the GAC/ celite, celite and lava biofilters after 23 day due to bacterial over-growth, and the toluene removal efficiency remarkably decreased with increasing pressure drop. Backwashing method was not effective for the control of biomass in these biofilters. In the PU biofilter however, backwashing allowed maintenance of a pressure drop of 1 to 3 mm H2O m(-1) and a removal efficiency of > 80%, indicating that the PU was the best packing material for toluene removal among the packing materials tested.  相似文献   

4.
In the present study, performance of the trickle bed airbiofilter (TBAB) for treating mono-chlorobenzene (MCB) was evaluated for various influent volatile organic compound (VOC) loadings using coal and mixed consortium of activated sludge as the packing material. Microbial acclimation to MCB was achieved by exposing the system continuously for 31 d to an average inlet MCB concentration of 0.688 g m(-3) at an empty bed residence time (EBRT) of 188 s. The TBAB achieved maximum removal efficiency of 87% at an EBRT of 188 s for an inlet concentration of 0.681 g m(-3), which is quite significance than the values reported in the literature. Elimination capacities of MCB increased with an increase of the influent VOC loading, but an opposite trend was observed for the removal efficiency The maximum elimination capacity of the biofilter was 110.75 g m(-3) hr(-1) at an inlet MCB concentration of 1.47 g m(-3). The effect of starvation on the TBAB was also studied. After starvation, the TBAB lost its ability to degrade MCB initially However the biofilter recovered very quickly Evaluation of the concentration profile along the bed height indicated that the bottom section of TBAB has the best performance for all concentrations. By using Wani's method of macrokinetic determination based on simple Monod kinetics, the maximum removal rate of MCB, r(max) and saturation constant K(m) was to be found as 1.304 g m(-3)s(-1) and 113.446 g m(-3), respectively.  相似文献   

5.
• TSIBF was composed of ABRS, FRS and HBRS. • THIBF can effectively remove various odors, VOCs and bioaerosols. • Different reaction segments in TSIBF can remove different types of odors and VOCs. • TSIBF can reduce the emission of bioaerosols through enhanced interception. A novel three-stage integrated biofilter (TSIBF) composed of acidophilic bacteria reaction segment (ABRS), fungal reaction segment (FRS) and heterotrophic bacteria reaction segment (HBRS) was constructed for the treatment of odors and volatile organic compounds (VOCs)from municipal solid waste (MSW) comprehensive treatment plants. The performance, counts of predominant microorganisms, and bioaerosol emissions of a full-scale TSIBF system were studied. High and stable removal efficiencies of hydrogen sulfide, ammonia and VOCs could be achieved with the TSIBF system, and the emissions of culturable heterotrophic bacteria, fungi and acidophilic sulfur bacteria were relatively low. The removal efficiencies of different odors and VOCs, emissions of culturable microorganisms, and types of predominant microorganisms were different in the ABRS, FRS and HBRS due to the differences in reaction conditions and mass transfer in each segment. The emissions of bioaerosols from the TSIBF depended on the capture of microorganisms and their volatilization from the packing. The rational segmentation, filling of high-density packings and the accumulation of the predominant functional microorganisms in each segment enhanced the capture effect of the bioaerosols, thus reducing the emissions of microorganisms from the bioreactor.  相似文献   

6.
UV photodegradation of 27 typical VOCs was systematically investigated. Contribution of photolysis and photooxidation to VOCs removal was identified. Gaseous VOC could be partially converted to particles by 185/254 nm UV irradiation. The mineralization and conversion of 27 VOCs by UV irradiation were reported. Photodegradation by ultraviolet irradiation (UV) is increasingly applied in volatile organic compound (VOC) and odor gas treatments. In this study, 27 typical VOCs, including 11 hydrocarbons and 16 hydrocarbon derivatives, at 150–200 ppm in air and nitrogen gas were treated by a laboratory-scale UV reactor with 185/254 nm irradiation to systematically investigate their removal and conversion by UV irradiation. For the tested 27 VOCs, the VOC removal efficiencies in air were within the range of 13%–97% (with an average of 80%) at a retention time of 53 s, which showed a moderate positive correlation with the molecular weight of the VOCs (R = 0.53). The respective contributions of photolysis and photooxidation to VOC removal were identified for each VOC. According to the CO2 results, the mineralization rate of the tested VOCs was within the range of 9%–90%, with an average of 41% and were negatively correlated to the molecular weight (R = -0.63). Many of the tested VOCs exhibited high concentration particulate matters in the off-gases with a 3–283 mg/m3 PM10 range and a 2–40 mg/m3 PM2.5 range. The carbon balance of each VOC during UV irradiation was analyzed based on the VOC, CO2 and PM10 concentrations. Certain organic intermediates and 23–218 ppm ozone were also identified in the off-gases. Although the UV technique exhibited a high VOC removal efficiency, its drawbacks, specifically low mineralization, particulate matters production, and ozone emission, must be considered prior to its application in VOC gas treatments.  相似文献   

7.
● Biofilm formation was enhanced by exogenous AHLs. ● EPS production and microbial adhesive strength of biofilm were promoted. ● Exogenous AHLs improved the performance of biofilters treating toluene. Biofilters are typical biofilm reactors, and they usually have poor biofilm formation resulting in limited reactor performance. Exogenous acylated homoserine lactones (AHLs) can enhance biofilm formation in many bioreactors based on quorum sensing regulation. However, their effect on biofilm in biofilters utilized for volatile organic compound (VOC) removal is unknown and needs to be investigated. In this study, the effects of the exogenous AHLs on biofilters for gaseous toluene removal were investigated. Analysis of biofilms in biofilters showed that the addition of exogenous AHLs considerably enhanced biofilm growth; the average biofilm concentration increased by 18%. Furthermore, the average biofilm coverage proportions in biofilters with and without exogenous AHLs were 17 % and 13 %, respectively, demonstrating the positive effect of exogenous AHLs on biofilm coverage. In particular, exogenous AHLs promoted the production of extracellular polymeric substances and the microbial adhesive strength of the biofilm. In addition, the exogenous AHLs showed no significant effect on the gaseous toluene removal efficiency of the biofilter. These results show that exogenous AHLs can enhance biofilm formation and can guide the application of exogenous AHLs in VOC biofilters.  相似文献   

8.
The occurrence and removal efficiency of seven pharmaceuticals (norfloxacin, trimethoprim, roxithromycin, sulfamethoxazole, ibuprofen, diclofenac and carbamazepine) were determined in three sewage treatment plants (STPs) with anaerobic/anoxic/oxic, anoxic/oxic and oxidation ditches processes in Xuzhou City, Eastern China. The results showed that seven pharmaceuticals were detected in the influent samples with concentrations ranging from 93 to 2540 ng·L−1. The removal of these substances among the three different STPs varied from 36 to 84%, with the highest performance obtained by the wastewater treatment works with tertiary treatment (sand filtration). Most of the compounds were removed effectively during biologic treatment while sand filtration treatment also made a contribution to the total elimination of most pharmaceuticals. The efficiency comparison of the three sewage treatment processes showed that the STP which employed anaerobic/anoxic/oxic was more effective to remove pharmaceuticals than the oxidation ditches and anoxic/oxic.  相似文献   

9.
朱倩倩  何先湧  胡章立  徐宏 《环境化学》2012,31(7):1069-1075
选取风车草、蝴蝶兰、吊兰、小纸莎、菖蒲、香根草6种植物作为人工湿地植物,砾石、活性炭、河沙、砾石+河沙、活性炭+河沙、活性炭+砾石共6种填料作为人工湿地填料,进行不同植物和不同填料组合处理某胶水厂洗釜过程产生的工业废水能力的实验研究.结果表明,在相同的进水水质和水力负荷条件下,从经济成本角度考虑,蝴蝶兰与活性炭+河沙组合较好,对CODCr、氨氮的去除率分别达到95%、99%,出水水质符合DB44/26—2001广东省地方标准水污染物排放限制标准一级标准.该技术处理效果好,操作简单,易维护,适合推广.  相似文献   

10.
采用生物滴滤塔(BTF)与光催化一体化(PCO)联用工艺应用于电子垃圾拆解现场废气处理的中试研究,研究结果表明:电子垃圾拆解现场排放的废气中含有高浓度的总悬浮颗粒物(TSP)和挥发性有机污染物(VOCs)。其中TSP的质量浓度为3792.5~7387.9μg·m-3,远高于中国环境空气质量控制标准(GB3095—2012)的二级标准(300μg·m-3);VOCs主要由芳香烃类VOCs、含氮含氧类VOCs、卤代烃类VOCs和脂肪烃类VOCs组成,总VOCs的质量浓度为(5 499.1±854.7)~(26 834.0±447.0)μg·m-3,其中芳香烃类VOCs含量最高,其质量浓度为(2369.9±359.8)~(24419.6±229.5)μg·m-3,其次是含氮含氧类VOCs和卤代烃类VOCs,分别为(1018.2±142.1)~(2144.2±167.5)和(1170.6±146.5)~(1 936.6±353.3)μg·m-3,脂肪烃类VOCs的质量浓度最低,只有(44.6±0.8)~(174.4±0.5)μg·m-3。相较单一BTF和PCO工艺,BTF-PCO联用工艺可以更为有效地去除电子垃圾拆解现场排放废气中的TSP和VOCs。研究结果表明,经过BTF-PCO处理后,出口TSP的质量浓度降低到747.4~1750.9μg·m-3,其去除率在76.3%以上,而对于VOCs来说,出口浓度下降更为明显,芳香烃类VOCs、含氮含氧类VOCs、卤代烃类VOCs和脂肪烃类VOCs的去除率分别大于或者等于97.0%、92.4%、83.4%和100%。  相似文献   

11.
• VFCWs are effective for the treatment of arsenic-containing wastewater. • Arsenic removal did not affect the removal of nutrients, except for TP in CW500. • Arsenic removal was highest when the temperature peaked and the reed was in bloom. • Substrate accumulation contributed more to arsenic removal than plant absorption. Four pilot-scale Vertical Flow Constructed Wetlands (VFCWs) filled with gravel and planted with Phragmites australis were operated for seven months in the field to study the efficiency of arsenic removal in contaminated wastewater. The average arsenic removal efficiency by the VFCWs was 52.0%±20.2%, 52.9%±21.3%, and 40.3%±19.4% at the theoretical concentrations of 50 μg/L (CW50), 100 μg/L (CW100), and 500 μg/L (CW500) arsenic in the wastewater, respectively. The results also showed no significant differences in the removal efficiency for conventional contaminants (nitrogen, phosphorus, or chemical oxygen demand) between wastewater treatments that did or did not contain arsenic (P>0.05), except for phosphorus in CW500. The highest average monthly removal rate of arsenic occurred in August (55.9%–74.5%) and the lowest in November (7.8%–15.5%). The arsenic removal efficiency of each VFCW was positively correlated with temperature (P<0.05). Arsenic accumulated in both substrates and plants, with greater accumulation associated with increased arsenic concentrations in the influent. The maximum accumulated arsenic concentrations in the substrates and plants at the end of the experiment were 4.47 mg/kg and 281.9 mg/kg, respectively, both present in CW500. The translocation factor (TF) of arsenic in the reeds was less than 1, with most of the arsenic accumulating in the roots. The arsenic mass balance indicated that substrate accumulation contributed most to arsenic removal (19.9%–30.4%), with lower levels in plants (3.8%–9.5%). In summary, VFCWs are effective for the treatment of arsenic-containing wastewater.  相似文献   

12.
两种常见植物净化室内空气的效果   总被引:1,自引:0,他引:1  
为探讨家居植物对甲醛的吸收能力和对改善室内空气质量的效果,将库拉索芦荟(Aloevera)和虎尾兰(Sansevieria trifasciata)两种植物放置于相对封闭的环境中,进行16d的甲醛暴露实验。结果表明,虎尾兰的甲醛耐受性高于库拉索芦荟,在整个实验过程中都保持良好的生长状态,具有持续的甲醛去除能力(去除率达...  相似文献   

13.
二段生物接触氧化法处理含硫废水的中试研究   总被引:3,自引:0,他引:3  
用二段生物接触氧化法探索炼油过程中所产生的含硫废水的处理新方法. 结果表明:经此工艺处理后的出水 C O D、氨氮、硫化物和酚的质量浓度ρ分别为266 .9 mg/ L、82 .85 mg/ L、1 .18 mg/ L 和1 .43 mg/ L,相应的去除率分别为86 .3 % 、40 % 、92 .7 % 和99 .3 % ,出水水质达到国家三级排放标准. 进出水水质的变化曲线表明,生物接触氧化法处理含硫废水对进水水质变化的适应能力比较强,出水水质比较稳定,显示了二段接触氧化法处理含硫废水的可行性  相似文献   

14.
Wet air oxidation (WAO) is employed in this work for treating high concentration chemical wastewater containing phenol and/or phenolic compounds. Experimental results indicate that over 90% removal of phenol or phenolic compounds can be efficiently achieved in the WAO process. Despite of the high treatment efficiency of the WAO process, the treated wastewater, however, still retains relatively high chemical oxygen demand (COD) concentration and does not meet the safe discharge standard. Hence further treatment of the WAO treated wastewater by an aerobic biological treatment using acclimatized activated sludge is necessary. It is found in the present studies that the combined process, if appropriately operated, is capable of drastically reducing the COD concentration of the high concentration chemical wastewater to meet the safe discharge requirement. The operating conditions of the combined process are investigated to determine their respective effects on the overall treatment efficiency. The experimental data also indicate that the oxidation reaction can be represented by a first order kinetics in terms of the component or COD concentration. For both single component and multicomponent wastewaters, the WAO process was found to have different activation energy for oxidation below and above 200°C, suggesting possibly different reaction mechanisms between these temperature ranges. The experimental results provided in the present work can provide significant and practical information for optimizing the combined treatment method.  相似文献   

15.
生物膜法处理养殖废水的研究   总被引:11,自引:0,他引:11  
室内模拟研究生物膜法处理养殖废水的效果及其影响因素。实验结果表明,连续曝气或者不曝气,生物膜法对养殖废水中的硝酸盐氮去除效果都很差。曝气条件下生物膜法对CODCrNH4^ -N、NO2^--N均有较好的净化效果,CODCrNH4^ -N、NO2^--N的去除率可分别达到79%、99%、99%;不曝气条件下生物膜法对CODCrH4^ -N、NO2^--N净化效果稍差,CODCrNH4^ -N、NO2^--N的去除率可分别达到78%、35%、76%。曝气会增加养殖废水中PO4^3 -P的质量浓度,增幅可达82%;不曝气时PO4^3 -P的去除率可达63%。投加复合菌株有利于生物膜的形成和处理效果的提高。  相似文献   

16.
The effluent of a wastewater treatment plant was treated in a pilot plant for reclaimed water production through the denitrification biofilter (DNBF) process, ozonation (O3), and biologic aerated filtration (BAF). The combined process demonstrated good removal performance of conventional pollutants, including concentrations of chemical oxygen demand (27.8 mg·L−1) and total nitrogen (9.9 mg·L−1) in the final effluent, which met the local discharge standards and water reuse purposes. Micropollutants (e.g., antibiotics and endocrine-disrupting chemicals) were also significantly removed during the proposed process. Ozonation exhibited high antibiotic removal efficiencies, especially for tetracycline (94%). However, micropollutant removal efficiency was negatively affected by the nitrite produced by DNBF. Acute toxicity variations of the combined process were estimated by utilizing luminescent bacteria. Inhibition rate increased from 9% to 15% during ozonation. Carbonyl compound concentrations (e.g., aldehydes and ketones) also increased by 58% as by-products, which consequently increased toxicity. However, toxicity eventually became as low as that of the influent because the by-products were effectively removed by BAF. The combined DNBF/O3/BAF process is suitable for the advanced treatment of reclaimed water because it can thoroughly remove pollutants and toxicity.  相似文献   

17.
多环芳烃(PAHs)在水环境中可以通过化学或微生物作用转化成其衍生物(SPAHs),而SPAHs可能具有更强的毒性和"三致性"从而危害人体健康。为探明污水厂中PAHs和SPAHs的存在性及不同二级处理和再生水处理工艺对它们的去除效果,对北京及广东共4座污水处理厂中PAHs及SPAHs进行了检测,同时对再生水进行了健康风险评价。结果显示:从进水浓度来看,4座污水处理厂中,低环芳烃浓度(191.8~394.2 ng·L~(-1))明显高于高环芳烃(89.3~108.2 ng·L~(-1));SPAHs中氧取代物(OPAHs)总浓度(253.8~322.2 ng·L~(-1))高于甲基取代物(MPAHs,44.3~220.4 ng·L~(-1))。不同二级处理工艺对PAHs的去除率为43.7%~58.2%,对SPAHs的去除率为45.8%~52.1%。不同再生水处理工艺对PAHs和SPAHs去除率差别较大,PAHs的去除率范围为1.8%~41.1%,SPAHs的去除率范围在2.35%~25.9%。结果表明,目标物的去除以生物降解为主,此外,吸附在固体颗粒上,随颗粒沉淀去除也是主要途径之一。通过对污水厂再生水的风险评价,苯并[a]芘(BaP)和二苯并[a,h]蒽(DBA)2种强致癌物TEQ浓度均高于1,其致癌风险较大,安全性有待提高。  相似文献   

18.
从3种污泥中驯化筛选出10种菌株,研究了各菌株对油制气废水不同污染指标的处理能力差别,以及各菌株对废水中芳烃化合物的降解能力.结果表明,各菌株可在初始阶段提高废水的BOD值,在高低废水浓度条件的降解能力基本一致;酚的去除率可达93.9%,但对废水中氨氮的去除率小于27.3%;实验采用的3种菌株对废水中的芳烃化合物都能降解,但其对芳环数≤3的芳烃化合物的降解能力强于对芳环数为4~6的芳烃化合物的降解能力.图4表2参10  相似文献   

19.
湿地土壤因素对污水处理作用的模拟研究   总被引:37,自引:0,他引:37  
人工湿地是近年来发展较快的污水处理设置,本文用室内模拟的方法研究了湿地土壤在处理生活污水的作用。结果表明,在排除了植物因子的前提下,人工湿地土壤-生生物系统对污水的民人仍具有良好的去除作用。系统不同单位区段对污水中的总有机碳(TOC),总氮(TN)去除率存在差异,在第一个单位区段的处理效率最高,分别达48%和38%,远大于第二、三、四区段,土壤吸收吸附磷的过程中存在着积累现象,土壤磷浓度在第一区段  相似文献   

20.
人工湿地植物量及其对净化效果影响的研究   总被引:7,自引:0,他引:7  
人工湿地污水处理系统中,植物对污水净化效果起着非常重要的作用,而植物量是植物生长的关键参数之一。为了明确植物量对污水处理效果的影响,在2002—2008年期间,详细测定了芦苇(Ph.australis Trin)、再力花(Thalia dealbata)、荻(M.sacchariflorus)和美人蕉(Canna indica)4种典型湿地植物不同年度的生物量、不同生长阶段的生物量、生物量年产率,以及同期湿地COD、BOD5、TN和TP等的去除率。结果表明:湿地植物在栽植成活、稳定生长以后,至少要再经过1个以上的生长周期才能完全适应湿地环境,达到生物量的最大值,其中芦苇根系和茎叶生物量显著高于其他植物;同种植物的植物量与COD、BOD5、TN去除率呈显著正相关,与TP相关性不强;植物量随生长周期的变化对湿地净化能力的影响显著,确定合理收割期有利于湿地的稳定运行;不同种类植物生物量年产率与各种污染物的去除率均显著相关,芦苇、再力花和美人蕉均具有较高的生物量年产率,污染物去除能力较好。在试验范围内,芦苇湿地的运行稳定性最好,再力花湿地具有最强的脱氮能力,美人蕉湿地能快速形成规模、实现稳定运行,这些为构建不同特点和不同需要的湿地提供了重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号