首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
土壤胞外酶活性是催化土壤有机质分解的关键限速步骤,而且对外界环境的变化极其敏感,然而却很少有研究聚焦于土壤胞外酶活性对气候变化的响应,尤其是在黄土高原地区.以黄土丘陵区撂荒草地为研究对象,野外模拟气候变暖和降水增加,通过测定土壤理化性质、植被群落特征和土壤酶活性,探究土壤酶活性及计量比对气候变化的响应特征及驱动因素.结果表明,增温、增雨以及二者的交互作用均显著降低了土壤β-1,4-葡糖苷酶(BG)和纤维二糖水解酶(CBH)活性,然而,土壤β-1,4-木糖苷酶(BX)活性在气候变化处理下却呈现出增加趋势,其中,增温处理的增幅最大,达到了63.15%.增温增雨的交互显著增加了β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)和亮氨酸胺肽酶(LAP)以及碱性磷酸酶(ALP)活性,分别增加了34.32%、 12.97%和44.86%.增温显著增加了过氧化物酶(PER)活性,而增雨显著降低了PER酶活性,增雨以及增温增雨显著降低了多酚氧化酶(PPO)活性,这主要归因于植物群落科组成的变化.增雨和增温增雨处理下碳降解酶活性∶氮降解酶活性(CEs∶NEs)和氮降解酶活性∶磷降解酶活性(NEs∶PEs)显著...  相似文献   

2.
黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征   总被引:9,自引:6,他引:3  
明确土壤胞外酶活性及酶化学计量比在农田撂荒过程中的变化特征及驱动因素,对揭示土壤养分可利用性随植被恢复的变化规律和阐明生态系统养分循环机制有重要意义.本文以黄土丘陵区不同撂荒年限坡耕地(0、10、20和30 a)为研究对象,通过测定土壤酶活性及酶计量比、土壤理化性质、植物多样性和科组成,探讨农田撂荒后土壤微生物养分限制状况及酶活性和酶计量比的主控因子.结果表明,β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)和碱性磷酸酶(ALP)的活性均随撂荒年限增加而显著增加,而β-1,4-葡萄糖苷酶(BG)活性则相反.土壤BG:(NAG+LAP)和BG:ALP呈现出与土壤BG活性相同的随撂荒年限增加而减小的趋势;而(NAG+LAP):ALP呈先升后降趋势,在撂荒20 a时达到最高值.酶化学计量的向量长度随撂荒年限增加而显著减小,表明撂荒过程中土壤微生物受碳(C)限制程度的减弱.撂荒前10 a酶化学计量的向量角度小于45°,后20 a大于45°,说明撂荒前期微生物受氮(N)限制,后期受磷(P)限制.冗余分析结果揭示土壤有机碳含量、总氮含量、C:N、C:P、pH以及植被多样性是调控酶活性和酶计量比变化的主要因子.分类变异分析表明,土壤和植物因素可解释不同撂荒年限下土壤酶活性及酶计量比差异的62.0%,植被特征与土壤理化特性之间的交互作用是土壤酶活性及酶计量比变化的主控因子,解释度为37.1%.综上所述,黄土丘陵区农田撂荒过程中应考虑外源P的投入以缓解生态系统中有效P的不足,研究结果可为理解脆弱生境恢复生态系统中微生物介导的生物地球化学循环机制以及指导土壤养分管理和生态可持续发展提供理论依据.  相似文献   

3.
长期施肥稻田土壤胞外酶活性对底物可利用性的响应特征   总被引:3,自引:2,他引:1  
土壤中碳(C)和氮(N)等底物的可利用性决定着微生物生长代谢,同时影响土壤胞外酶活性.为探讨土壤酶活性对土壤原有有机质变化的响应,本试验选取了长期定位试验田的4种施肥处理水稻土[无肥对照(CK)、单施化肥(NPK)、有机肥+化肥配施(OM)和秸秆还田+化肥配施(ST)],通过0、 4、 8和12个月的分段培养获取了具有不同可利用性C、N含量梯度的土壤,分析参与土壤碳氮转化过程的关键酶β-1,4-葡萄糖苷酶(BG)和β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)活性与可溶性有机碳(DOC)、铵态氮(NH~+_4-N)、土壤微生物生物量碳(MBC)和微生物生物量氮(MBN)含量的关系.结果表明,OM和ST处理对土壤中DOC含量的提高更显著(P0.01),是CK和NPK处理的2~3倍.NPK、OM和ST处理的MBC含量、BG和NAG酶活性高于CK处理.所有施肥处理中,随着可利用性底物(DOC和NH~+_4-N)含量的升高,BG和NAG活性整体呈稳定或下降趋势,MBC和MBN含量变化趋势与BG和NAG相同.施肥处理和培养时间以及二者的交互作用极显著影响(P0.01)土壤DOC、NH~+_4-N、MBC和MBN的含量.回归分析显示, OM处理MBC/MBN值与DOC/NH~+_4-N值之间正相关(P0.05);ST处理的ln(BG)/ln(NAG)值和DOC/NH~+_4-N值之间负相关(P0.01),这表明稻田土壤可利用性底物浓度是影响胞外酶活性的关键因子,且微生物量的碳氮计量比受控于土壤中底物的碳氮计量关系.该结果对深入研究稻田土壤中胞外酶活性变化规律,调节稻田土壤碳氮平衡,提高稻田土壤肥力具有一定指导意义.  相似文献   

4.
黄土高原草地土壤细菌群落结构对于降水变化的响应   总被引:3,自引:3,他引:0  
李娜  王宝荣  安韶山  焦峰  黄倩 《环境科学》2020,41(9):4284-4293
微生物作为生态系统功能的主要参与者,对降水变化引起的土壤水分变化的响应是科学评估气候变化对半干旱生态系统影响的一个非常重要的方面.为研究降水变化对土壤微生物群落结构多样性的影响,在黄土高原进行了为期2 a的原位模拟降雨变化实验,设置了5种降水梯度,即减少自然降雨的80%和40%、自然降雨和增加自然降雨的40%和80%(编号为D80、 D40、 NP、 I40和I80).结果表明:①减雨或增雨80%处理中C/N较低,而增雨40%(I40)时最大, 0~20 cm土层的均值为10.76; MBC/MBN在减雨80%(D80)和增雨80%(I80)处理中随土层变化显著,D80时最大值为14.15.②黄土高原天然草地土壤中,主要的优势菌门为放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria),主要的优势菌纲为放线菌纲(Actinobacteria)、酸杆菌纲(Acidobacteria)、α-变形杆菌纲(α-Proteobacteria)和热微菌纲(Thermomicrobia).③RDA分析显示,在降水处理条件下,土壤溶解性有机碳、可溶性有机氮、电导率、pH值的变化是影响该研究区土壤细菌分布的主要因素.总之,干旱或极端降水对黄土高原区土壤活性有机质含量和土壤细菌种群多样性及丰度影响显著.  相似文献   

5.
明确撂荒地植被恢复过程中土壤微生物养分限制特征及其驱动机制对揭示土壤养分循环和维持生态系统稳定具有重要意义.以秦岭中段不同年限撂荒地为研究对象,通过测定土壤理化性质、5种胞外酶活性[β-1,4-葡萄糖苷酶(BG)、纤维二糖水解酶(CBH)、β-1,4-N-乙酰基氨基葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)和酸性磷...  相似文献   

6.
水稻不同生育期根际与非根际土壤胞外酶对施氮的响应   总被引:13,自引:5,他引:8  
与稻田土壤碳氮循环(矿化、转化等)密切相关的酶活性可以反映微生物的生长和代谢过程.为明确水稻不同生育期根际与非根际土壤胞外酶对施氮的响应,采用根际袋法区分水稻根际和非根际土壤,利用96微孔酶标板荧光分析法,测定其碳氮过程关键酶β-1,4-葡萄糖苷酶(BG)和β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)活性,探讨根际效应、施氮和生育期对土壤酶活的影响及其调控机制.结果表明,施氮使拔节期土壤BG酶活性相对于不施氮处理降低了7.4~13.5 nmol·(g·h)~(-1),而使成熟期BG酶活性增大了7.0~31.4 nmol·(g·h)~(-1),同时根际与非根际土壤中BG酶活性也随水稻的生育期而发生相应的变化.与不施氮处理相比,施氮使水稻成熟期非根际土壤NAG酶活性增加了1.1倍,根际土壤降低了0.3倍.施氮和生育期显著影响土壤BG酶活性,而水稻生育期、施氮和根际效应及其交互作用均对NAG酶活性有极显著影响.RDA分析表明土壤微生物生物量碳(MBC)和可溶性有机碳(DOC)含量主要影响水稻根际土壤胞外酶活性;而非根际土壤中酶活性的变化主要受微生物生物量氮(MBN)和铵态氮(NH_4~+-N)的影响.土壤酶活性与多种因素存在复杂关系,需要综合考虑植物生理特征、土壤酶活性和土壤特征,分析N添加对微生物群落组成的影响.  相似文献   

7.
地膜覆盖对农田土壤养分和生态酶计量学特征的影响   总被引:4,自引:2,他引:2  
生态酶计量比可以用来衡量土壤微生物能量和养分资源限制状况.为明确地膜覆盖后农田土壤生态酶计量学特征,选取地膜覆盖下不同残膜积累量的农田土壤,利用荧光分析法测定其碳氮磷循环关键过程中的β-1,4-葡萄糖苷酶(BG)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)和磷酸酶(ACP)的活性.探讨地膜覆盖对农田土壤养分循环和供应的影响.结果表明,施用化肥的土壤,覆膜使Olsen-P和NO-3-N分别降低至不覆膜土壤的48%~62%和16%~24%;而有机-无机配施的土壤,两者在覆膜条件下分别提高了144%~203%和1.9~5.1倍.覆膜下SOC∶TN在有机-无机配施土壤中降低了6.6%~25.8%,而SOC∶TP和TN∶TP却显著增加.覆膜土壤中MBC含量均显著低于不覆膜的土壤,然而由于MBN和MBP也随之降低,MBC∶MBN和MBC∶MBP无显著差异;覆膜使MBN∶MBP在S1和S2分别降低了36.6%和23.8%,而在S3和S4中分别提高了5.4和1.3倍.土壤中NAG∶ACP计量比与微生物生物量中相对应的元素的计量比趋势相似;而覆膜下BG∶NA...  相似文献   

8.
中亚热带不同林龄马尾松林土壤酶学计量特征   总被引:3,自引:1,他引:2  
土壤酶活性是表征土壤微生物养分需求与养分限制状况的重要指标.本文以中亚热带不同林龄(9、17、26、34和43 a)马尾松人工林为研究对象,通过测定β-葡萄糖苷酶(BG)、N-乙酰-β-氨基葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)、酸性磷酸酶(AP)、多酚氧化酶(POX)和过氧化物酶(POD)活性,并计算土壤酶化...  相似文献   

9.
研究降雨格局变化对植物群落多样性、土壤C:N:P生态化学计量特征的影响,以及关键土壤因子与植物群落多样性间的关系,对于荒漠草原植物群落多样性的保护具有重要意义.本文以黄土高原西部荒漠草原为研究对象,通过3 a野外降雨控制试验(减少40%降雨、减少20%降雨、自然降雨、增加20%降雨和增加40%降雨),探讨干湿年份下降雨变化对植物群落多样性及其土壤C:N:P生态化学计量特征的影响,以及降雨变化下土壤C:N:P生态化学计量特征及关键土壤因子与植物群落多样性的关系.结果表明,在正常年份与偏干年份(2013年与2015年),Patrick丰富度和Shannon-Wiener多样性指数分别以减雨20%处理显著低于对照和增雨40%处理,在偏湿年份(2014年),Patrick丰富度和Shannon-Wiener多样性指数对降雨处理无显著差异.在正常年份与偏干年份,随降雨量的增加土壤有机碳(SOC)、全氮(TN)、全磷(TP)、碳氮比(C:N)、碳磷比(C:P)和氮磷比(N:P)呈降低趋势,其中,C:N显著降低;在偏湿年份,随降雨量增加土壤SOC、TN、C:P和N:P呈上升趋势.在正常年份,降雨处理对土壤含水量影响不显著,导致土壤含水量对植物群落影响有限,SOC、TN、N:P、C:N和微生物量氮(MBN)对植物群落多样性的影响更为突出;在偏湿年份,年降雨量丰富,降雨量增加导致土壤养分上升,水分不是限制植物生长的最重要因素,土壤含水量、土壤养分与生态化学计量特征共同调节和控制着植物群落多样性;在偏干年份,降雨处理对土壤含水影响显著,且降雨量增加导致土壤养分流失较多,因此,土壤含水量成为影响植物群落多样性的最主要因素.由此可知,在不同干湿年份,植物群落多样性与土壤C:N:P生态化学计量特征对降雨变化的响应不同;土壤C:N:P对植物群落多样性的影响也不同,本文的研究结果旨在为未来降雨变化下荒漠草原的保护与管理提供一定的理论依据.  相似文献   

10.
探索黄土旱塬区农田土壤碳、氮和磷生物地球化学循环特征,可为农作物高效生产和土地可持续利用提供科学依据和技术支撑.以山西寿阳24 a玉米旱作试验田为对象,研究长期秸秆覆盖还田、直接还田、过腹还田和不还田对土壤元素和胞外酶活性化学计量比的影响,并计算向量角度和长度用于指示微生物面临的资源限制情况,向量角大于45°和小于45°分别表示微生物受磷限制和氮限制,偏离45°越大表示限制程度越大,向量长度越长表示微生物受碳限制越严重.结果表明:(1)长期秸秆还田土壤C/N和C/P分布在9.81~14.28和14.58~21.92之间,均值分别为12.36和17.51,分别较试验初期降低了6.0%和4.2%;土壤N/P分布在1.27~1.57之间,均值为1.42,较初期提高了2.2%.土壤C/N和C/P均呈现出先降低后升高的变化趋势,土壤N/P基本呈现出持平趋势,且不同秸秆还田处理之间土壤元素计量比均无显著性差异.(2)相比24 a长期不还田处理,长期秸秆覆盖还田处理土壤β-1,4-葡萄糖苷酶(BG)和β-1,4-N-乙酰葡糖氨糖苷酶(NAG)活性显著提高了134.4%和107.5%(P<0.0...  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

14.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

15.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

16.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

17.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

18.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

19.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

20.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号