首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accounting for Uncertainty in Making Species Protection Decisions   总被引:1,自引:0,他引:1  
Abstract:  Uncertainty gives rise to two decision errors in implementing the U.S. Endangered Species Act: listing species that are not in danger of extinction and delisting species that are in danger of extinction. I evaluated four methods (minimum standard, precautionary principle, minimax regret criterion, adaptive management) for deciding whether to list or delist a species when there is uncertainty about how those decisions are likely to influence survival of the species. A safe minimum standard criterion preserves some minimum amount or safe standard (population) of a species unless maintaining that amount generates unacceptable social cost. The precautionary principle favors not delisting a species when there is insufficient evidence on the efficacy of state management plans for protecting them. A minimax regret criterion selects the delisting decision that minimizes the maximum loss likely to occur under alternative ecosystem states. When the cost of making a correct decision is less than the cost of making an incorrect decision, the minimax regret criteria indicates that delisting is the optimal decision. Active adaptive management employs statistically valid experiments to test hypotheses about the likely impacts of delisting decisions. Safe minimum standard and minimax regret criterion are not compatible with the U.S. Endangered Species Act. The precautionary principle comes closest to describing how federal agencies make delisting decisions. Active adaptive management is scientifically superior to the other methods but is costly and time consuming and may not be compatible with the U.S. National Environmental Policy Act.  相似文献   

2.
Recovery plans for species listed under the U.S. Endangered Species Act are required to specify measurable criteria that can be used to determine when the species can be delisted. For the 642 listed endangered and threatened plant species that have recovery plans, we applied recursive partitioning methods to test whether the number of individuals or populations required for delisting can be predicted on the basis of distributional and biological traits, previous abundance at multiple time steps, or a combination of traits and previous abundances. We also tested listing status (threatened or endangered) and the year the recovery plan was written as predictors of recovery criteria. We analyzed separately recovery criteria that were stated as number of populations and as number of individuals (population‐based and individual‐based criteria, respectively). Previous abundances alone were relatively good predictors of population‐based recovery criteria. Fewer populations, but a greater proportion of historically known populations, were required to delist species that had few populations at listing compared with species that had more populations at listing. Previous abundances were also good predictors of individual‐based delisting criteria when models included both abundances and traits. The physiographic division in which the species occur was also a good predictor of individual‐based criteria. Our results suggest managers are relying on previous abundances and patterns of decline as guidelines for setting recovery criteria. This may be justifiable in that previous abundances inform managers of the effects of both intrinsic traits and extrinsic threats that interact and determine extinction risk. Predicción de Criterios de Recuperación para Especies de Plantas en Peligro y Amenazadas con Base en Abundancias Pasadas y Atributos Biológicos  相似文献   

3.
Recent surveys of recovery plans indicate that criteria, such as population sizes, for delisting species from the U.S. Endangered Species Act (ESA) are often unrealistically low by scientific standards. We describe the delisting criterion for the threatened southern sea otter (Enhydra lutris nereis) developed by the Southern Sea Otter Recovery Team. A major oil spill is the most serious threat to this sea otter population. After extensive modeling of oil spills, the recovery team concluded that it was not scientifically defensible to develop a delisting criterion in terms of a single probability of extinction over a specified time period. Instead, the team decided to define a size at which it would consider the population endangered and to consider the population threatened as long as a major oil spill might reduce it to that size. The effective population size (Ne) for endangered status was set at 500, estimated to be about 1850 otters. Using a spill the size of the Exxon Valdez spill (250,000 bbl), the oil spill model was iterated to generate a frequency distribution of the number of sea otters contacted by oil, from which the team estimated that less than 800 otters would be killed by 90% of the simulated spills. Thus, the delisting criterion was set at 1850 + 800 = 2650 individuals. There have been several proposals to improve the Endangered Species Act by providing quantitative guidance, in the form of specific probabilities of extinction within some time frame or specific criteria like those used by the World Conservation Union as to the levels of extinction risk represented by the terms "threatened" and "endangered." Experiences of the Sea Otter Recovery Team indicate that guidelines should not be overly rigid and should allow flexibility for dealing with specific situations. The most important consideration is to appoint a recovery team that is both technically well qualified and unconstrained by pressures from management agencies.  相似文献   

4.
Abstract:  The U.S. Endangered Species Act (ESA) allows listing of subspecies and other groupings below the rank of species. This provides the U.S. Fish and Wildlife Service and the National Marine Fisheries Service with a means to target the most critical unit in need of conservation. Although roughly one-quarter of listed taxa are subspecies, these management agencies are hindered by uncertainties about taxonomic standards during listing or delisting activities. In a review of taxonomic publications and societies, we found few subspecies lists and none that stated standardized criteria for determining subspecific taxa. Lack of criteria is attributed to a centuries-old debate over species and subspecies concepts. Nevertheless, the critical need to resolve this debate for ESA listings led us to propose that minimal biological criteria to define disjunct subspecies (legally or taxonomically) should include the discreteness and significance criteria of distinct population segments (as defined under the ESA). Our subspecies criteria are in stark contrast to that proposed by supporters of the phylogenetic species concept and provide a clear distinction between species and subspecies. Efforts to eliminate or reduce ambiguity associated with subspecies-level classifications will assist with ESA listing decisions. Thus, we urge professional taxonomic societies to publish and periodically update peer-reviewed species and subspecies lists. This effort must be paralleled throughout the world for efficient taxonomic conservation to take place.  相似文献   

5.
Abstract:  The ethical, legal, and social significance of the U.S. Endangered Species Act of 1973 (ESA) is widely appreciated. Much of the significance of the act arises from the legal definitions that the act provides for the terms threatened species and endangered species. The meanings of these terms are important because they give legal meaning to the concept of a recovered species. Unfortunately, the meanings of these terms are often misapprehended and rarely subjected to formal analysis. We analyzed the legal meaning of recovered species and illustrate key points with details from "recovery" efforts for the gray wolf ( Canis lupus ). We focused on interpreting the phrase "significant portion of its range," which is part of the legal definition of endangered species. We argue that recovery and endangerment entail a fundamentally normative dimension (i.e., specifying conditions of endangerment) and a fundamentally scientific dimension (i.e., determining whether a species meets the conditions of endangerment). Specifying conditions for endangerment is largely normative because it judges risks of extinction to be either acceptable or unacceptable. Like many other laws that specify what is unacceptable, the ESA largely specifies the conditions that constitute unacceptable extinction risk. The ESA specifies unacceptable risks of extinction by defining endangered species in terms of the portion of a species' range over which a species is "in danger of extinction." Our analysis indicated that (1) legal recovery entails much more than the scientific notion of population viability, (2) most efforts to recover endangered species are grossly inadequate, and (3) many unlisted species meet the legal definition of an endangered or threatened species.  相似文献   

6.
In 2014, the Fish and Wildlife Service (FWS) and National Marine Fisheries Service announced a new policy interpretation for the U.S. Endangered Species Act (ESA). According to the act, a species must be listed as threatened or endangered if it is determined to be threatened or endangered in a significant portion of its range (SPR). The 2014 policy seeks to provide consistency by establishing that a portion of the range should be considered significant if the associated individuals’ “removal would cause the entire species to become endangered or threatened.” We reviewed 20 quantitative techniques used to assess whether a portion of a species’ range is significant according to the new guidance. Our assessments are based on the 3R criteria—redundancy (i.e., buffering from catastrophe), resiliency (i.e., ability to withstand stochasticity), and representation (i.e., ability to evolve)—that the FWS uses to determine if a species merits listing. We identified data needs for each quantitative technique and considered which methods could be implemented given the data limitations typical of rare species. We also identified proxies for the 3Rs that may be used with limited data. To assess potential data availability, we evaluated 7 example species by accessing data in their species status assessments, which document all the information used during a listing decision. In all species, an SPR could be evaluated with at least one metric for each of the 3Rs robustly or with substantial assumptions. Resiliency assessments appeared most constrained by limited data, and many species lacked information on connectivity between subpopulations, genetic variation, and spatial variability in vital rates. These data gaps will likely make SPR assessments for species with complex life histories or that cross national boundaries difficult. Although we reviewed techniques for the ESA, other countries require identification of significant areas and could benefit from this research.  相似文献   

7.
For species listed under the U.S. Endangered Species Act (ESA), the U.S. Fish and Wildlife Service and National Marine Fisheries Service are tasked with writing recovery plans that include “objective, measurable criteria” that define when a species is no longer at risk of extinction, but neither the act itself nor agency guidelines provide an explicit definition of objective, measurable criteria. Past reviews of recovery plans, including one published in 2012, show that many criteria lack quantitative metrics with clear biological rationale and are not meeting the measureable and objective mandate. I reviewed how objective, measureable criteria have been defined implicitly and explicitly in peer‐reviewed literature, the ESA, other U.S. statutes, and legal decisions. Based on a synthesis of these sources, I propose the following 6 standards be used as minimum requirements for objective, measurable criteria: contain a quantitative threshold with calculable units, stipulate a timeframe over which they must be met, explicitly define the spatial extent or population to which they apply, specify a sampling procedure that includes sample size, specify a statistical significance level, and include justification by providing scientific evidence that the criteria define a species whose extinction risk has been reduced to the desired level. To meet these 6 standards, I suggest that recovery plans be explicitly guided by and organized around a population viability modeling framework even if data or agency resources are too limited to complete a viability model. When data and resources are available, recovery criteria can be developed from the population viability model results, but when data and resources are insufficient for model implementation, extinction risk thresholds can be used as criteria. A recovery‐planning approach centered on viability modeling will also yield appropriately focused data‐acquisition and monitoring plans and will facilitate a seamless transition from recovery planning to delisting. Un Marco de Referencia para Desarrollar Criterios de Recuperación Objetivos y Medibles para Especies Amenazadas y en Peligro  相似文献   

8.
Abstract: Under the U.S. Endangered Species Act, a species is classified as endangered, threatened, or recovered based on the extent to which its survival is affected by one or more of five subjective factors. A key criticism of the act is that it makes no reference to quantitative or even qualitative parameters of what constitutes "danger of extinction." Without objective standards to guide decisionmakers, classification decisions fall prey to political and social influences. We recommend the development of species-specific, status-determining criteria as a means to rationalize and expedite the listing process and reclassification decisions, independent of the requirement for delisting criteria in recovery plans. Such criteria should (1) clearly define levels of vulnerability, (2) identify gaps in information on life-history parameters, and (3) address uncertainty in existing data. As a case study, we developed preliminary criteria for bowhead whales (    Balaena mysticetus ). Thresholds for endangered and threatened status were based on World Conservation Union ( IUCN) Red List criteria and population viability analyses. Our analysis indicates that particular attention must be focused on population structure within the species to appropriately classify the degree to which one or more components of a species are vulnerable to extinction. A similar approach could be used in the classification of other species. According to our application of the IUCN criteria and those developed for similar species by Gerber and DeMaster (1999) , the Bering Sea population of bowhead whales should be delisted, whereas the other four populations of bowheads should continue to be considered endangered.  相似文献   

9.
Abstract: The U.S. Endangered Species Act (ESA) defines an endangered species as one “at risk of extinction throughout all or a significant portion of its range.” The prevailing interpretation of this phrase, which focuses exclusively on the overall viability of listed species without regard to their geographic distribution, has led to development of listing and recovery criteria with fundamental conceptual, legal, and practical shortcomings. The ESA's concept of endangerment is broader than the biological concept of extinction risk in that the “esthetic, ecological, educational, historical, recreational, and scientific” values provided by species are not necessarily furthered by a species mere existence, but rather by a species presence across much of its former range. The concept of “significant portion of range” thus implies an additional geographic component to recovery that may enhance viability, but also offers independent benefits that Congress intended the act to achieve. Although the ESA differs from other major endangered‐species protection laws because it acknowledges the distinct contribution of geography to recovery, it resembles the “representation, resiliency, and redundancy” conservation‐planning framework commonly referenced in recovery plans. To address representation, listing and recovery standards should consider not only what proportion of its former range a species inhabits, but the types of habitats a species occupies and the ecological role it plays there. Recovery planning for formerly widely distributed species (e.g., the gray wolf [Canis lupus]) exemplifies how the geographic component implicit in the ESA's definition of endangerment should be considered in determining recovery goals through identification of ecologically significant types or niche variation within the extent of listed species, subspecies, or “distinct population segments.” By linking listing and recovery standards to niche and ecosystem concepts, the concept of ecologically significant type offers a scientific framework that promotes more coherent dialogue concerning the societal decisions surrounding recovery of endangered species.  相似文献   

10.
A Critique of the Recovery of Greenback Cutthroat Trout   总被引:2,自引:0,他引:2  
Abstract: There are no examples of recovery of fish listed under the U.S. Endangered Species Act, but the number of federally threatened greenback cutthroat trout (  Oncorhynchus clarki stomias ) populations is approaching the delisting goal. We evaluated recovery of this subspecies in light of developing theory in conservation biology and with regard to recovery of other salmonids in the inland western United States. Four of the five criteria used to define populations that would count toward delisting appeared to underestimate the risk of extinction of those populations. Typically, recovery goals for numbers of greenback cutthroat trout populations were less stringent than those for other inland salmonids petitioned for listing or listed as threatened under the Endangered Species Act and were comparable to those for a federally endangered species. Before delisting is considered, we propose that historical populations be replicated in additional waters to protect genetic diversity and that existing populations be enlarged to reduce their vulnerability to demographic variation, to increase their access to refugia, and to permit reestablishment of mobile life histories. Existing stocks should also be evaluated to determine whether they represent distinct population segments.  相似文献   

11.
The Endangered Species Act (ESA) of the United States was enacted in 1973 to prevent the extinction of species. Recovery plans, required by 1988 amendments to the ESA, play an important role in organizing these efforts to protect and recover species. To improve the use of science in the recovery planning process, the Society for Conservation Biology (SCB) commissioned an independent review of endangered species recovery planning in 1999. From these findings, the SCB made key recommendations for how management agencies could improve the recovery planning process, after which the U.S. Fish and Wildlife Service and the National Marine Fisheries Service redrafted their recovery planning guidelines. One important recommendation called for recovery plans to make threats a primary focus, including organizing and prioritizing recovery tasks for threat abatement. We sought to determine the extent to which results from the SCB study were incorporated into these new guidelines and whether the SCB recommendations regarding threats manifested in recovery plans written under the new guidelines. Recovery planning guidelines generally incorporated the SCB recommendations, including those for managing threats. However, although recent recovery plans have improved in their treatment of threats, many fail to adequately incorporate threat monitoring. This failure suggests that developing clear guidelines for monitoring should be an important priority in improving ESA recovery planning.  相似文献   

12.
The U.S. Endangered Species Act grants protection to species, subspecies, and "distinct population segments" of vertebrate species. Historically, Congress included distinct population segments into endangered species legislation to enable the U.S. Fish and Wildlife Service to implement a flexible and pragmatic approach in listing populations of vertebrate species. Recently, the U.S. Fish and Wildlife Service and the National Marine Fisheries Service have proposed a policy that would narrowly define distinct population segments as evolutionarily significant units based on morphological and genetic distinctiveness between populations. Historically, the power to list species or populations as distinct population segments has been used to tailor management practices to unique circumstances; grant varied levels of protection in different parts of a species' range; protect species from extinction in significant portions of their ranges as well as to protect populations that are unique evolutionary entities. A strict redefinition of distinct population segments as evolutionarily significant units will compromise management efforts because the role of demographic and behavioral data will be reduced. Furthermore, strictly cultural, economic, or geographic justifications for listing populations as threatened or endangered will be greatly curtailed.  相似文献   

13.
Decisions concerning the appropriate listing status of species under the U.S. Endangered Species Act (ESA) can be controversial even among conservationists. These decisions may determine whether a species persists in the near term and have long‐lasting social and political ramifications. Given the ESA's mandate that such decisions be based on the best available science, it is important to examine what factors contribute to experts’ judgments concerning the listing of species. We examined how a variety of factors (such as risk perception, value orientations, and norms) influenced experts’ judgments concerning the appropriate listing status of the grizzly bear (Ursus arctos horribilis) population in the Greater Yellowstone Ecosystem. Experts were invited to complete an online survey examining their perceptions of the threats grizzly bears face and their listing recommendation. Although experts’ assessments of the threats to this species were strongly correlated with their recommendations for listing status, this relationship did not exist when other cognitive factors were included in the model. Specifically, values related to human use of wildlife and norms (i.e., a respondent's expectation of peers’ assessments) were most influential in listing status recommendations. These results suggest that experts’ decisions about listing, like all human decisions, are subject to the use of heuristics (i.e., decision shortcuts). An understanding of how heuristics and related biases affect decisions under uncertainty can help inform decision making about threatened and endangered species and may be useful in designing effective processes for protection of imperiled species.  相似文献   

14.
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate‐related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and “distinct population segments” may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case‐by‐case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species’ continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA‐listed species’ survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long‐term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro  相似文献   

15.
A stochastic population growth model using empirical demographic data confirmed that the Piping Plover population of the Great Plains of North America is declining by more than 7% annually. Unchecked, this decline would result in extirpation in approximately 80 years. When recent adult (0.66) and immature (0.60) survival rates were held constant, a 31% increase—from 0.86 to 1.13 chicks fledged per pair—was needed to stabilize the population. Annual population increases of 1% and 2% required 1.16 and 1.19 chicks per pair, respectively. Such growth would result in the Great Plains population reaching the level—(2550 pairs)—needed for delisting from the U.S. Endangered Species Act protection in 53 and 30 years, respectively. One- and five-year delays in the initiation of 1% population growth caused 13 and 67 year delays respectively in reaching recovery.  相似文献   

16.
Lack of guidance for interpreting the definitions of endangered and threatened in the U.S. Endangered Species Act (ESA) has resulted in case‐by‐case decision making leaving the process vulnerable to being considered arbitrary or capricious. Adopting quantitative decision rules would remedy this but requires the agency to specify the relative urgency concerning extinction events over time, cutoff risk values corresponding to different levels of protection, and the importance given to different types of listing errors. We tested the performance of 3 sets of decision rules that use alternative functions for weighting the relative urgency of future extinction events: a threshold rule set, which uses a decision rule of x% probability of extinction over y years; a concave rule set, where the relative importance of future extinction events declines exponentially over time; and a shoulder rule set that uses a sigmoid shape function, where relative importance declines slowly at first and then more rapidly. We obtained decision cutoffs by interviewing several biologists and then emulated the listing process with simulations that covered a range of extinction risks typical of ESA listing decisions. We evaluated performance of the decision rules under different data quantities and qualities on the basis of the relative importance of misclassification errors. Although there was little difference between the performance of alternative decision rules for correct listings, the distribution of misclassifications differed depending on the function used. Misclassifications for the threshold and concave listing criteria resulted in more overprotection errors, particularly as uncertainty increased, whereas errors for the shoulder listing criteria were more symmetrical. We developed and tested the framework for quantitative decision rules for listing species under the U.S. ESA. If policy values can be agreed on, use of this framework would improve the implementation of the ESA by increasing transparency and consistency. Evaluando Reglas de Decisión para Categorizar el Riesgo de Extinción de Especies con el Fin de Desarrollar de Criterios Cuantitativos de Alistamiento en el Acta de Especies en Peligro de los EE. UU.  相似文献   

17.
Abstract: Endangered species recovery plans commonly set goals for population size that are used to define the success of recovery efforts. We examined variation in these population recovery goals for bird species listed under the U. S. Endangered Species Act to determine whether there were simple predictors of recovery population size. The median population sizes that must be met for a species to be removed from the list or downlisted to the threatened category are 4000 and 1500 respectively, but the thresholds varied considerably. Most variation in population recovery goals ( ≥75%) was explained by the population size when the recovery plan was written. Species listed when their population's size was relatively large have higher population recovery goals, whereas those listed when populations were small have lower population goals. Population sizes set for recovery also increased over time and were higher for species listed throughout the United States rather than for part of the country. In combination, these three variables explained 86% of the variance in population goals for delisting and 94% of the variance in goals for downlisting. Body mass, annual fecundity, maximum lifespan, whether the population was listed as threatened or endangered, and whether a formal population viability analysis was conducted were variables not significantly associated with population recovery goals. Thus, we found that variables relating to the circumstances under which the populations were listed could explain almost all of the variance in recovery population goals, and that biological traits of the endangered birds explained little of the variance.  相似文献   

18.
Most species are imperfectly detected during biological surveys, which creates uncertainty around their abundance or presence at a given location. Decision makers managing threatened or pest species are regularly faced with this uncertainty. Wildlife diseases can drive species to extinction; thus, managing species with disease is an important part of conservation. Devil facial tumor disease (DFTD) is one such disease that led to the listing of the Tasmanian devil (Sarcophilus harrisii) as endangered. Managers aim to maintain devils in the wild by establishing disease‐free insurance populations at isolated sites. Often a resident DFTD‐affected population must first be removed. In a successful collaboration between decision scientists and wildlife managers, we used an accessible population model to inform monitoring decisions and facilitate the establishment of an insurance population of devils on Forestier Peninsula. We used a Bayesian catch‐effort model to estimate population size of a diseased population from removal and camera trap data. We also analyzed the costs and benefits of declaring the area disease‐free prior to reintroduction and establishment of a healthy insurance population. After the monitoring session in May–June 2015, the probability that all devils had been successfully removed was close to 1, even when we accounted for a possible introduction of a devil to the site. Given this high probability and the baseline cost of declaring population absence prematurely, we found it was not cost‐effective to carry out any additional monitoring before introducing the insurance population. Considering these results within the broader context of Tasmanian devil management, managers ultimately decided to implement an additional monitoring session before the introduction. This was a conservative decision that accounted for uncertainty in model estimates and for the broader nonmonetary costs of mistakenly declaring the area disease‐free.  相似文献   

19.
Structured population models are increasingly used in decision making, but typically have many entries that are unknown or highly uncertain. We present an approach for the systematic analysis of the effect of uncertainties on long-term population growth or decay. Many decisions for threatened and endangered species are made with poor or no information. We can still make decisions under these circumstances in a manner that is highly defensible, even without making assumptions about the distribution of uncertainty, or limiting ourselves to discussions of single, infinitesimally small changes in the parameters. Suppose that the model (determined by the data) for the population in question predicts long-term growth. Our goal is to determine how uncertain the data can be before the model loses this property. Some uncertainties will maintain long-term growth, and some will lead to long-term decay. The uncertainties are typically structured, and can be described by several parameters. We show how to determine which parameters maintain long-term growth. We illustrate the advantages of the method by applying it to a Peregrine Falcon population. The U.S. Fish and Wildlife Service recently decided to allow minimal harvesting of Peregrine Falcons after their recent removal from the Endangered Species List. Based on published demographic rates, we find that an asymptotic growth rate lambda > 1 is guaranteed with 5% harvest rate up to 3% error in adult survival if no two-year-olds breed, and up to 11% error if all two-year-olds breed. If a population growth rate of 3% or greater is desired, the acceptable error in adult survival decreases to between 1% and 6% depending of the proportion of two-year-olds that breed. These results clearly show the interactions between uncertainties in different parameters, and suggest that a harvest decision at this stage may be premature without solid data on adult survival and the frequency of breeding by young adults.  相似文献   

20.
Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost‐effectiveness of nesting site and at‐sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost‐effectiveness measures. Nesting beach protection was the most cost‐effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high‐bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low‐cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost‐effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost‐effective, particularly, if fisheries in the area are small and of little commercial value. Rentabilidad de Estrategias de Conservación Alternativas Aplicadas a Tortugas Laúd del Pacífico  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号