首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
Ca(Ⅱ)在活性污泥生物絮凝中的作用研究   总被引:2,自引:0,他引:2  
采用4个平行的序批式反应器(SBR),研究了进水Ca2+浓度对活性污泥絮体表而特性和结构稳定性的影响,并由此来确定Ca2+在生物絮凝中的作用.结果表明:随着进水Ca2+浓度的增加,污泥中的Ca含量逐渐增大.进水中Ca2+的加入,增大了污泥絮体的粒径和密度,进南改善了污泥的沉降性能;Ca2+的加入,使可供结合的蛋白质数量最高增至近1倍,污泥表面疏水性也相应增强;污泥絮凝性能的改善,主要和可供Ca2+结合的蛋白质含量增加有关,而非多糖;EDTA通过络合污泥絮体中的Ca2+,破坏了山Ca2+架桥形成的污泥絮体结构,这说明Ca2+可通过和胞外聚合物(extracellular polymeric substances,EPS)中的负电官能团架桥来促进污泥絮体的形成并维持絮体结构的稳定性.  相似文献   

2.
研究了城市生活垃圾焚烧厂渗沥液中Ca2+对厌氧颗粒污泥膨胀床反应器(EGSB)处理效果的影响,并采用静态实验方法考察了Ca2+对厌氧颗粒污泥产甲烷活性的影响。实验结果表明,进水COD为17 000 mg/L的条件下,当Ca2+浓度低于6 000 mg/L时,EGSB对COD去除率达93%以上;当Ca2+浓度高于6 000 mg/L时,COD去除率随运行时间明显下降,并在污泥中形成大量沉淀。静态实验结果表明,废水中低浓度Ca2+促进了厌氧颗粒污泥的产甲烷活性,但高浓度Ca2+明显抑制了其产甲烷活性,这是导致高Ca2+浓度条件下EGSB对COD去除率降低的主要原因。研究表明,颗粒污泥产甲烷活性恢复程度随Ca2+浓度增加而减弱。  相似文献   

3.
在静态条件下,研究了Ca2+在煤泥表面的吸附动力学。考察了不同Ca2+初始浓度的吸附实验,并对实验结果进行了动力学方程的拟合,结果表明,煤泥对Ca2+的吸附过程较好地符合准二级动力学方程。研究了初始Ca2+浓度、溶液pH值、振荡速度和煤泥质量对Ca2+吸附量的影响,实验结果表明:(1)煤泥对Ca2+吸附量随着Ca2+溶液浓度的增加而增大,Ca2+浓度大于3.828 mmol/L时,吸附量基本保持不变;(2)溶液pH<9时煤泥颗粒对Ca2+的吸附主要是静电吸附,pH>9时Ca2+在煤泥表面主要是沉淀吸附和一羟基吸附;(3) Ca2+在煤泥表面吸附的最佳振荡强度为150 r/min。  相似文献   

4.
不同生物营养物处理工艺剩余污泥中温水解特性   总被引:1,自引:0,他引:1  
为了解不同生物营养物处理(BNR)工艺剩余污泥性质差异及其中温水解特性,采用序批式实验研究了来源于Orbal氧化沟(OD)和倒置A2/O工艺剩余污泥在中温水解过程中污泥浓度、营养物释放、污泥粒径、污泥絮凝性、污泥比阻及污泥胞外聚合物(EPS)的历时变化。结果表明,相同泥龄(约18 d)条件下,Orbal OD剩余污泥氮含量较高,倒置A2/O剩余污泥磷含量较高,两者VSS/SS均低于0.6,导致中温水解过程污泥减量空间有限、氮磷释放速率不同。此外,尽管倒置A2/O工艺剩余污泥絮体尺寸及絮凝能力明显大于Orbal OD工艺剩余污泥的对应值,但两污泥比阻相近。中温水解过程中,两污泥絮体的尺寸均变小、絮凝能力均降低、比阻均增高;两者的胞外聚合物均呈现增高再降低趋势,且蛋白质均占EPS质量的75%以上,为主要的胞外物质。  相似文献   

5.
为进一步拓展天然高分子絮凝剂壳聚糖的应用范围,以壳聚糖、L-半胱氨酸为原料,通过酰胺化反应制备一种具有重金属捕集功能的高分子重金属絮凝剂-2-氨基-3-巯基丙酰壳聚糖(MCC),研究了水体中常见的阴阳离子、有机配位剂及浊度对MCC除镉性能的影响,探讨了絮体形貌与絮体分形维数及絮凝除镉效果间的关系。结果表明,Na+、Cl-、NO3-、F-、SO42-的存在对MCC除Cd2+均有促进作用,Ca2+表现为明显的抑制作用;低浓度的EDTA对除镉有促进作用,随着EDTA浓度的增大,逐渐转为抑制作用;低浓度的腐殖酸对MCC去除Cd2+有显著的促进作用;在一定范围内,浊度可促进 MCC对Cd2+的去除;絮体间空隙越多,絮体分形维数越小,除镉效果越好。  相似文献   

6.
Fenton氧化破解污水处理厂污泥   总被引:2,自引:0,他引:2  
研究了Fenton氧化反应的影响因素pH值、H2O2/Fe2+投加比、反应温度和反应时间对污泥破解效果的影响,并以污泥上清液中蛋白质、糖类、SCOD及污泥TSS、VSS的变化来表征污泥破解的程度。结果表明,最佳破解条件为:pH=5,最佳H2O2/Fe2+投加比为24:1,反应温度为70℃,反应时间为90 min,在该条件下,SCOD、溶解性蛋白质和多糖分别由88.76、19.70和14.95 mg/L增加到3 714.64、2 039.90和289.70 mg/L;TSS及VSS分别由34.60 g/L、19.76 g/L降为26.60 g/L、14.22 g/L,去除率分别为23.12%和 28.14%。Fenton氧化破解污泥,能够有效促进污泥絮体分解,有利于进行后续的厌氧消化处理。  相似文献   

7.
王琳  李煜 《环境工程学报》2009,3(7):1160-1164
为了有效地控制铅污染,利用序批式反应器(sequencing batch reactor,SBR)培养的以醋酸钠为碳源的好氧颗粒污泥作为吸附剂,进行生物吸附含铅废水的效能和机理的研究。通过考察酸度、接触时间和Pb2+初始浓度等因素的影响,验证好氧颗粒污泥吸附模型,并利用不同的脱附剂,进一步解析其生物吸附的Pb2+。实验结果表明, 酸度是影响好氧颗粒污泥生物吸附Pb2+的关键因素,当初始pH为5时,好氧颗粒污泥对含铅废水生物吸附效果最好。对低浓度(0~20 mg/L)含铅废水, 10 min后可快速达到吸附平衡。好氧颗粒污泥对Pb2+的实测饱和吸附量为101.97±9.00 mg/g,符合朗缪尔(Langmuir)模型。好氧颗粒污泥生物吸附Pb2+的过程,伴随着pH值的升高和K+、 Ca2+、 Mg2+的释放,此现象揭示离子交换作用是好氧颗粒污泥生物吸附Pb2+的机理之一。此外,脱附剂HNO3、EDTA和CaCl2能实现Pb2+的回收和好氧颗粒污泥的重复利用。  相似文献   

8.
污泥基活性炭吸附Cu2+的应用研究   总被引:1,自引:0,他引:1  
以城市污水处理厂剩余污泥为原料,以ZnCl2为活化剂制取污泥基活性炭。以此污泥基活性炭为吸附剂,对含Cu2+的废水进行了吸附实验研究。考察了溶液pH值、Cu2+的起始浓度对Cu2+离子吸附量的影响;利用等温吸附实验作出吸附等温线,并考察了污泥基活性炭吸附剂吸附Cu2+的动力学方程。实验结果表明,污泥基活性炭对Cu2+具有良好的吸附性能。吸附的最佳pH值为5;吸附符合Langmuir和Freundlich吸附等温方程,吸附为优惠吸附,吸附量随着吸附质溶液浓度的增加而增大;吸附平衡时间为4 h,吸附动力学符合二级动力学方程。  相似文献   

9.
以磷钨酸为光催化剂,在紫外灯照射下,对甲基橙溶液进行光催化降解,考察了几种阴阳离子对磷钨酸光催化降解甲基橙溶液的影响。结果表明:Mg2+、Ca2+、NO-3、SO2-4和CO2-3均对催化活性有促进作用,其中Mg2+和Ca2+仅有微弱的促进作用;NO-3和SO2-4随着浓度的增加促进作用也有所增加;CO2-3则随着浓度的增加促进作用呈下降趋势;Mn2+、Al3+和Cl-对光解反应存在较强的抑制作用,且Al3+和Cl-随着其浓度的增加,抑制作用增强。  相似文献   

10.
根据环氧丙烷废水的特点,应用电化学法处理具有较高的可行性。运用电化学法处理PO废水前必须进行废水预处理,用以提高电流效率和延长极板寿命。采用曝气和化学絮凝结合的方法去除PO废水中的Ca2+,同时去除部分COD。对曝气、无机絮凝剂(PACl、PFS)和有机絮凝剂(PAM)对PO废水处理过程中的曝气量、曝气时间、投药量、复配和沉降时间等主要影响因子进行了实验研究,通过比较Ca2+、COD的去除效果、絮凝剂用量、沉降时间、处理成本等方面,在设定的实验参数下得到最佳预处理方案为:曝气量为2.5 L/min,曝气45 min,投加Na2CO3粉末24 kg/t 废水,充分混匀后加入PFS+PAM复配絮凝剂。本方案具有废水处理效果好(Ca2+的去除率为77.03%,COD的去除率为37.46%)、投药量少((100+7.5)g/t废水)、沉降时间短(5 min)、处理成本低(0.675元/t废水)等优点。通过对比经预处理和不经预处理后电化学法对COD去除效果、电流和处理后阴极表面,验证了预处理方案的必要性与可行性。  相似文献   

11.
以处理生活污水的平板膜-生物反应器为依托,通过将进水调配成30、200和500 mg/L 3种不同的钙离子浓度,考察钙离子对短期膜污染的影响。结果表明,随着钙离子浓度的增加,TMP增长趋势变小,膜污染得到缓解;钙离子浓度为200 mg/L时,膜的渗透性最好,而过高的钙离子浓度并不利于降低膜污染。钙离子的投加强化了生物絮凝作用,可以降低SMP和LB-EPS的含量,主要通过降低外部阻力减缓膜污染;投加钙离子也可以增加絮体的大小,较大的絮体形成的泥饼有更好的过滤性,然而过高的钙离子浓度会使无机颗粒的量增加,造成平均粒径下降,将会加重内部污染,进而加剧膜污染。  相似文献   

12.
The objectives of this study were to examine the application of the divalent cation bridging theory (DCBT) to improve settling, dewatering, and effluent quality in pilot-scale reactors and a full-scale system treating an industrial wastewater. This was accomplished by lowering the monovalent-to-divalent (M/D) cation ratio by direct divalent cation addition. Research has shown that the M/D ratio is a potential indicator for settling and dewatering problems at wastewater treatment plants, and M/D ratios above 2 have been associated with poor settling, dewatering, and effluent quality. The M/D ratio of the wastewater in this study ranged from 6 to 20. The cations studied were calcium and magnesium. Results showed that the addition of calcium improved floc properties compared to control reactors with no calcium addition. The reductions in sludge volume index, effluent chemical oxygen demand (COD), and effluent total suspended solids (TSS) were approximately 35, 34, and 55%, respectively, when the M/D ratio was decreased to approximately 2:1. In addition, the cake solids from a belt filter press simulator increased by 72% and the optimum polymer dose required for conditioning was reduced by 70% in the reactor fed the highest calcium concentration when compared to control reactors with no calcium addition. The addition of calcium also decreased the negative effect of high filamentous organism numbers. In general, the addition of magnesium (Mg2+) had similar effects on effluent quality and dewatering properties, although some differences were measured. A full-scale test using calcium addition was performed. Measurements of effluent quality and floc properties were performed before, during, and after the calcium (Ca2+) addition period. The average M/D ratio during these periods was 6.2, 4.6, and 14.0, respectively. The addition of Ca2+ decreased the effluent five-day biochemical oxygen demand, effluent TSS, and effluent COD. The increased Ca2+ concentration also improved dewatering measured by a decrease in specific resistance to filtration and capillary suction time. Overall, the addition of divalent cations to the pilot- and full-scale activated sludge systems improved floc properties and the data fit well with the DCBT.  相似文献   

13.
Wastewater samples collected from seven wastewater treatment plants (WWTPs) were characterized to assess the impacts of wastewater cations on the activated sludge process. The cations included in this study were sodium (Na+), potassium, ammonium, calcium, magnesium, aluminum (Al), and iron (Fe). Among the selected cations, Al and Fe were of most interest to this study because their role in bioflocculation has not been extensively studied and remains largely unknown. The data showed that WWTPs contained highly varying concentrations of Na+, Al, and Fe in the wastewater and that these cations were responsible for differences between WWTPs as to sludge dewatering rates and effluent quality. In general, a high influent Na+ concentration caused poor sludge dewatering and effluent characteristics. However, when sufficient Al and Fe were present in floc, the deleterious effects of Na+ were offset. The data associated with Al further revealed that waste activated sludge with low Al contained high concentrations of soluble and colloidal biopolymer (protein + polysaccharide), resulting in a high effluent chemical oxygen demand, high conditioning chemical requirements, and poor sludge dewatering properties. These results suggest that Al will improve activated sludge effluent quality by scavenging organic compounds from solution and binding them to floc.  相似文献   

14.
Li XZ  Fan CM  Sun YP 《Chemosphere》2002,48(4):453-460
This study aimed at improving the photocatalytic (PC) oxidation of humic acids (HA) in TiO2 suspensions by adding cationic ion such as calcium or magnesium. A set of tests was first conducted in the dark to study the adsorption of HA onto TiO2 in suspensions at different pH and calcium concentrations. The experiment demonstrated that the adsorption of HA onto the TiO2 particles was either pH-dependent or calcium strength-dependent due to electrostatic interaction and calcium ion bridging. The photodegradation of HA in the presence of UV irradiation was investigated as a function of pH and the concentration of calcium and magnesium ions. The results showed that the adsorption behavior between HA and TiO2 played a very important role during the PC oxidation process. The PC oxidation could be enhanced at neutral pH by increasing the cation strength. The kinetics of HA PC degradation in TiO2 suspensions with different initial concentrations was also studied using the Langmuir-Hinshelwood model.  相似文献   

15.
After sepiolite was modified with Fe3+ to increase its surface charge, the initial algal removal rate increased significantly, but its Q8h was not improved substantially at clay loadings below 0.1 g/L. Modification on netting and bridging properties of clays by either chitosan or polyacrylamide (PAM) dramatically increased flocculation (Q8h) of MA cells in freshwaters. Algal removal efficiencies of different solids, including Type III clays, local soils and sediments, were all improved to a similar level of >90% at a total loading of 0.011 g/L (contained 0.001 g/L chitosan) after they were modified with chitosan, making the idea of clearing up algal blooms using local soils/sediments possible. The mechanism of netting and bridging was confirmed to be the most important factor in improving the removal efficiency of cells, whereas clays also played important roles in the sedimentation of the floc.  相似文献   

16.
Laboratory digestion studies using waste activated sludges (WAS) were conducted to compare the digestion performance between anaerobic and aerobic processes. Nine samples of WAS from seven wastewater treatment plants were collected and batch-digested under both anaerobic and aerobic conditions for 30 days at 25 degrees C. The cation content of wastewater (both floc and solution phases) and solution biopolymer (protein and polysaccharide) was measured before and after digestion and compared with volatile solids destruction data. The study revealed that each digestion process was associated with a distinct biopolymer fraction, which accounted for differences in volatile solids reduction under anaerobic and aerobic conditions. The anaerobic digestion data showed strong correlations between soluble protein generation, ammonium production, percent volatile solids reduction, and floc iron (Fe). These data suggest that the amount of volatile solids destroyed by anaerobic digestion depends on the Fe content of floc. In aerobic digestion, polysaccharide accumulated in solution along with calcium and magnesium. For aerobic digestion, correlations between divalent cation release and the production of inorganic nitrogen were found. This implies that divalent cation-bound biopolymer, thought to be lectin-like protein, was the primary organic fraction degraded under aerobic conditions. The results of the study show that the cation content in wastewater is an important indicator of the material that will digest under anaerobic or aerobic conditions and that some of the volatile solids will digest only under either anaerobic or aerobic conditions.  相似文献   

17.
Song Y  Hahn HH  Hoffmann E 《Chemosphere》2002,48(10):1029-1034
To understand the effects of solution conditions on the precipitation of calcium phosphates from wastewater for recovery, a computer programme PHREEQC was employed to calculate the speciation and saturation-index (SI) with respect to hydroxyapatite of a chemically defined precipitation system, which contains phosphate of 1–200 mg P/l, with Ca/P molar ratios of one to 10 times of the stoichiometric calcium to phosphorus molar ratio of hydroxyapatite, at a pH range of 7.0–11.0. The results show that the SI is respectively the logarithmic function of the phosphate concentration and the calcium concentration, increasing with the increase of either of them; the SI is a polynomial function of the solution pH value and increases with its increase, and the effect of solution pH value is due to its influence on base uptake of the precipitation reaction and the speciation of phosphate and calcium ions; the SI is also a logarithmic function of the solution ionic strength but decreases with its increase; at the temperature range of 5–30 °C the SI increases linearly with solution temperature and the effect of temperature is also due to its influence on the speciation of phosphate and calcium ions.  相似文献   

18.
Diffusion of dissolved oxygen through activated sludge flocs was studied, as it represents a potential mechanism for simultaneous nitrification and denitrification in activated sludge systems. Dissolved oxygen profiles through six floc particles collected at different times from a full-scale activated sludge plant demonstrated that that the dissolved oxygen concentration declines through all floc particles. For larger floc particles (2-mm diameter and greater), the dissolved oxygen concentration reached near-zero values at depths depending on process operating conditions. A mathematical model based on diffusion of dissolved oxygen, organic substrate (methanol), ammonia, nitrite, and nitrate through a spherical floc and consumption of dissolved oxygen by heterotrophs and autotrophs accurately predicted the dissolved oxygen profile and required adjustment of only one model parameter--the concentration of heterotrophs. A different dissolved oxygen decline pattern was exhibited for the smaller floc particles characterized, with the dissolved oxygen reaching a non-zero plateau toward the center of the floc. This pattern was not reproduced with the mathematical model developed and suggests that additional mechanisms are responsible for the transport of dissolved oxygen into the center of these flocs. Implications of these results regarding the occurrence of simultaneous nitrification and denitrification include consideration of the factors that affect floc size and distribution (simultaneous nitrification and denitrification is maximized with larger floc particles), coupling of the International Water Association (London) activated models to predict activated sludge composition with diffusion models to consider intrafloc effects, and the effects of substrate diffusion on the apparent half-saturation constant for various substrates in activated sludge systems.  相似文献   

19.
以氢氧化镁作为混凝剂,不同浊度高岭土水样为研究对象,运用iPDA在线监测技术对混凝过程絮体形成进行监测,探求了操作条件对絮体特性和混凝过程的影响;同时讨论了FI值和浊度去除的关系。结果表明,当浊度分别为5、10和20 NTU时,最佳投加量分别为21.6、14.4和3.6 mg/L;随着pH的升高,FI指数增大,同时混凝剂的最佳投加量也逐步减小;随着慢速搅拌转速的增大,絮体破碎过程明显,FI指数降低;当转速为60 r/min时,浊度去除率最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号