首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABSTRACT: Determination of the boundary conditions for modeling ground water flow is a critical point especially in regional models. Normally the regional models require model areas that are greater than the given area of interest. This work focuses on the prediction of hydraulic heads in regional models using flux boundary conditions. The model uses flux boundary conditions that were estimated using a radial flow analog and Darcy's law. The regional model that is presented uses no parameter identification (inverse estimation) procedures. In the present work, the Houston area was used. The simulation of the hydrological conditions of the Chicot and Evangeline Aquifers that underlie the Houston area were made using the available information about the geological profile in the Houston region and the current information about the existing production wells. The regional model works as a forward problem. The system parameters such as hydraulic conductivity, specific storage, and hydrological stresses were specified, and the model predicts the hydraulic head. Actual data from piezometers operated by the U.S. Geological Survey (USGS) in many places throughout Houston were used as initial conditions. Some piezometric head data were generated using the regional variable theory called kriging to supply head estimates in areas where data were unavailable. The Modular Three Dimensional Finite Difference Groundwater Flow Model developed by the USGS was used to predict the hydraulic heads. The predicted ground water heads are compared to the actual data. The results show that the model performs well for locations where data were available.  相似文献   

2.
ABSTRACT. The response of stream-unconfined aquifer systems to localized recharge is investigated by means of a two-dimensional finite element model. A variational approach is used in conjunction with the finite element method to solve the ground water flow equation. Linear approximated triangular elements are used to calculate the hydraulic head distribution in the flow region. The Crank-Nicholson centered scheme of numerical integration is employed to approximate the time derivative in the flow equation. A computer program is developed to calculate the hydraulic head distribution in the flow region. Solutions provided by the finite element model should prove useful in the evaluation of quantitative and qualitative changes in aquifer systems due to natural or artificial recharge. In addition, they should prove useful in the study of irrigation and drainage problems.  相似文献   

3.
ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time‐distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood‐control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented.  相似文献   

4.
A graphical inverse method for determining the regional transmissivity distribution was applied to three field problems. The study areas were the Hanford Site, Washington; the Rocky Mountain Arsenal, Colorado; and the Nevada Test Site, Nevada. This method can aid in flow system conceptualization by revealing the location of bedrock controls for groundwater flow. It is a valuable tool for aiding the hydrogeologist in asking questions about the nature of trends in the pattern of transmissivity values. Quantitative estimates of regional transmissivities can be used as starting points for further parameter refinement. Sensitivity analysis using Monte Carlo simulation shows that quantitative estimates of transmissivity can be obtained when measurement error in the hydraulic head does not cause a large error in the hydraulic gradient.  相似文献   

5.
In order to prevent salinisation of the streams of the Riverine Plain of the Murray-Darling Basin in southern Australia, evaporation basins are used to dispose of saline irrigation drainage water. Local on-farm (individual landholder) and community (shared between multiple landholders) basins are increasingly being used to prevent export of salt outside irrigation districts. There are questions regarding the availability of land suitable for these basins and their impact on the surrounding environment. We describe the use of currently available spatial data to assist in regional planning for the environmentally safe use of these basins. A GIS-based approach was developed using suitability criteria expected to minimise the risk of off-site effects of basin leakage. The criteria were proximity to surface water features, urban areas and infrastructure, water table depth and salinity, and soil hydraulic conductivity. The approach was applied to all of the major irrigation districts at 1:250,000, the scale at which data are available over the entire Riverine Plain. Confidence in well-defined parameters such as proximity to infrastructure, urban areas and surface water features was higher than for those involving interpolated point data such as water table depth, salinity, and hydraulic conductivity. Most critically, hydraulic conductivity, the most important factor for basin leakage, was found to be unreliable at this scale. Use of higher resolution data (up to 1:100,000) available for two of the irrigation districts improved confidence in both water table depth and salinity but not in hydraulic conductivity. Despite these limitations, it was found that: (i) on-farm basins can only be used on an opportunistic basis in the eastern irrigation districts, but can be widely used in the western districts; (ii) community basins can be used anywhere there is suitable land; and (iii) the results raise serious questions as to whether there is enough suitable land in the eastern districts to dispose of all of the drainage water that is produced.  相似文献   

6.
This paper highlights the increasing concerns relating to hydroenvironmetal issues and cites recent examples of the challenges now being regularly faced by hydroenvironmetal scientists and engineers. The limitations and restrictions of both physical (or laboratory) and numerical (or computer based) hydraulic models used in the planning and management of aquatic basins are discussed. General details are given of numerical models used for flow and water quality concentration predictions in estuarine waters, with particular application to the challenges occurring along the South Wales coast. A highly accurate and non-diffusive finite difference scheme that solves the transport equation for predicting water quality indicators and suspended sediment concentration distributions is also discussed. In particular, details are outlined of the extension of the water quality indicators of faecal coliforms, as required to comply with the EU Bathing Water Directive, to predict health risk assessment, in the form of predicting the risk of gastroenteritis. Three example research projects along the South Wales coast are described; the projects involve the application of two-dimensional and three-dimensional hydroenvironmetal models to predict flow patterns and water quality indicator organism distributions in the coastal receiving waters. These studies include: (i) a curvilinear finite difference approach to modelling flows in the Bristol Channel, (ii) coastal health risk predictions in Swansea Bay using combined water quality and epidemiological models, and (iii) combined sewer overflow discharges into Cardiff Bay.  相似文献   

7.
ABSTRACT: Numerical models were used to examine the limitations of the assumptions used in an analytical induced infiltration model. The assumptions tested included negligible streambed effects, negligible areal recharge, two-dimensional ground water flow, fully penetrating rivers and wells, and constant surface water stage. For situations that deviate from the underlying assumptions, the analytical model becomes a less reliable predictor of induced infiltration. The numerical experiments show that streambed effects cannot be neglected if the streambed conductivity is more than one order of magnitude lower than the aquifer hydraulic conductivity. Areal recharge cannot be neglected if the ground water basin receives more than 5 in/yr of areal recharge. Three-dimensional flow effects due to well partial penetration cannot be neglected if the ratio of horizontal hydraulic conductivity to vertical hydraulic conductivity (Kh/Ku) is greater than 10. Surface water elevation fluctuations can significantly influence the induced infiltration rate, depending on the degree of fluctuations and the ground water hydraulic gradient.  相似文献   

8.
This study simulated crop and water yields in the Missouri River Basin (MRB; 1,371,000 km2), one of the largest river basins in the United States, using the Soil and Water Assessment Tool (SWAT) at a fine resolution of 12‐digit Hydrological Unit Codes (HUCs) using the regionalization calibration approach. Very few studies have simulated the entire MRB, and those that have developed were at a coarser resolution of 8‐digit HUCs and were minimally calibrated. The MRB was first divided into three subbasins and was further divided into eleven regions. A “head watershed” was selected in each region and was calibrated for crop and water yields. The parameters from the calibrated head watershed were extrapolated to other subwatersheds in the region to complete comprehensive spatial calibration. The simulated crop yields at the head watersheds were in close agreement with observed crop yields. Spatial validation of the aggregated crop yields resulted in reasonable predictions for all crops except dryland corn in a few regions. Simulated and observed water yields in head watersheds and also in the validation locations were in close agreement in naturalized streams and poor agreement in streams with high groundwater‐surface water interactions and/or reservoirs found upstream of the gauges. Overall, the SWAT model was able to reasonably capture the hydrological and crop growth dynamics occurring in the basin despite some limitations.  相似文献   

9.
The transport of Ni2+ ions in a column, filled with porous media, was observed in three dimensions and time by magnetic resonance imaging (MRI) in a clinical scanner. For porous media we used glass beads or quartz sand in a saturated continuous flow mode. The magnetic moment of Ni2+ decreased the T1 relaxation time of 1H in aqueous solution. This concentration-dependent effect was used by a fast low angle shot (FLASH) MRI sequence for imaging the concentration of the dissolved ions. Since Ni2+ behaves as a conservative tracer under the chosen conditions, the tracer motion was representative for the water flow in the porous medium. Currently, we can achieve an isotropic spatial resolution of 1.5 mm and a temporal resolution of 170 s. The transport observation gives direct access to hydraulic flow properties of the porous media. The fluid flow velocity field was calculated by a fronttracking method and the statistical properties of the velocities were investigated. We also compared the experimental data with the three-dimensional particle tracking model PARTRACE, which uses the experimental flow field as input.  相似文献   

10.
ABSTRACT: A mathematical solution based on porous media flow is developed for solute travel time to a well as affected by a leak around the upper part of the casing. Consider a well of radius 0.2 meters (m) penetrating, fully, a semiconfined aquifer of thickness 6 m with impermeable casing length of 4.5 m, and screened casing length 1.5 m. Around the upper 1.5 m of the impermeable casing length, there is a highly permeable region (a leak). The radius of influence of the well is 10 m. The porous flow medium has a hydraulic conductivity of 10 m/day and a porosity of 0.25. Between the water table and the water level in the well, there is a steady state pumped down head difference of 0.3 m. Solute travel time from a point at the bottom of the leak to the well is 2.33 days. If the leak is sealed (grouted), the travel time is 6.24 days. Examples of six different geometries are given. Laboratory studies verify the theory. The computations should be useful in the design and protection of water wells from solutes, such as from agriculture, industry, strip mines, or sanitary landfills.  相似文献   

11.
ABSTRACT: The Kirkwood‐Cohansey aquifer has been identified as a critical source for meeting existing and expected water supply needs for southern New Jersey. Several contaminated sites exist in the region; their impact on the aquifer has to be evaluated using ground water flow and transport models. Ground water modeling depends on availability of measured hydrogeologic data (e.g., hydraulic conductivity, for parameterization of the modeling runs). However, field measurements of such critical data have inadequate spatial density, and their locations are often clustered. The goal of this study was to research, compile, and geocode existing data, then use geostatistics and advanced mapping methods to develop a map of horizontal hydraulic conductivity for the Kirkwood‐Cohansey aquifer. Spatial interpolation of horizontal hydraulic conductivity measurements was performed using the Bayesian Maximum Entropy (BME) Method implemented in the BMELib code library. This involved the integration of actual measurements with soft information on likely ranges of hydraulic conductivity at a given location to obtain estimate maps. The estimation error variance maps provide an insight into the uncertainty associated with the estimates, and indicate areas where more information on hydraulic conductivity is required.  相似文献   

12.
Transport of Cryptosporidium parvum through macroporous soils is poorly understood yet critical for assessing the risk of groundwater contamination. We developed a conceptual model of the physics of flow and transport in packed, tilted, and vegetated soilboxes during and immediately after a simulated rainfall event and applied it to 54 experiments implemented with different soils, slopes, and rainfall rates. Using a parsimonious inverse modeling procedure, we show that a significant amount of subsurface outflow from the soilboxes is due to macropore flow. The effective hydraulic properties of the macropore space were obtained by calibration of a simple two-domain flow and transport model that accounts for coupled flow in the matrix and in the macropores of the soils. Using linear mixed-effects analysis, macropore hydraulic properties and oocyst attenuation were shown to be associated with soil bulk density and rainfall rate. Macropore flow was shown to be responsible for bromide and C. parvum transport through the soil into the underlying pore space observed during the 4-h experiments. We confirmed this finding by conducting a pair of saturated soil column studies under homogeneously repacked conditions with no macropores in which no C. parvum transport was observed in the effluent. The linear mixed-effects and logistic regression models developed from the soilbox experiments provide a basis for estimating macropore hydraulic properties and the risk of C. parvum transport through shallow soils from bulk density, precipitation, and total shallow subsurface flow rate. The risk assessment is consistent with the reported occurrence of oocysts in springs or groundwater from fractured or karstic rocks protected only by shallow overlying soils.  相似文献   

13.
A steam injection pilot-scale experiment was performed on the unsaturated zone of a strongly heterogeneous fractured soil contaminated by jet fuel. Before the treatment, the soil was stimulated by creating sub-horizontal sand-filled hydraulic fractures at three depths. The steam was injected through one hydraulic fracture and gas/water/non-aqueous phase liquid (NAPL) was extracted from the remaining fractures by applying a vacuum to extraction wells. The injection strategy was designed to maximize the heat delivery over the entire cell (10 m × 10 m × 5 m). The soil temperature profile, the recovered NAPL, the extracted water, and the concentrations of volatile organic compounds (VOCs) in the gas phase were monitored during the field test. GC-MS chemical analyses of pre- and post-treatment soil samples allowed for the quantitative assessment of the remediation efficiency. The growth of the heat front followed the configuration of hydraulic fractures. The average concentration of total hydrocarbons (g/kg of soil) was reduced by ~ 43% in the upper target zone (depth = 1.5-3.9 m) and by ~ 72% over the entire zone (depth = 1.5-5.5 m). The total NAPL mass removal based on gas and liquid stream measurements and the free-NAPL product were almost 30% and 2%, respectively, of those estimated from chemical analyses of pre- and post-treatment soil samples. The dominant mechanisms of soil remediation was the vaporization of jet fuel compounds at temperatures lower than their normal boiling points (steam distillation) enhanced by the ventilation of porous matrix due to the forced convective flow of air. In addition, the significant reduction of the NAPL mass in the less-heated deeper zone may be attributed to the counter-current imbibition of condensed water from natural fractures into the porous matrix and the gravity drainage associated with seasonal fluctuations of the water table.  相似文献   

14.
ABSTRACT: Hydraulic modification of flood plains by human activity is the primary cause of rising flood damages throughout the world. As flood‐plain hydraulic roughness increases, so does the water level for a fixed flow rate. This raises the flood damage associated with a flood of given return period, and thus, magnifies the flood risk. This article presents an approach that integrates climatic, hydrologic, and hydraulic principles and presents models to discern the probable causes of flood damage in a basin that undergoes flood‐plain development. The article documents key factors that govern flood damage and presents a case study that illustrates the principles of forensic hydrology in an impacted flood plain. The study demonstrates flood level rise caused by hydraulic alteration of a flood plain between 1969 and 1995 and apportioned the increased water level among agricultural and structural factors located in the study area.  相似文献   

15.
As withdrawals from deep compartmentalized aquifers increasingly exceed recharge throughout the western United States, conjunctive water use management alternatives have become an applied research priority. This study highlights both details and limitations of the role of irrigation canal seepage as groundwater recharge, revealing the regional limitations of canal seepage as a dependable source of recharge in overdrawn aquifers. A suite of geochemical indicators were used together with a numerical model to evaluate current and future management scenarios focused on recharge derived from seepage from a region‐wide irrigation canal system. Twenty‐five years of static groundwater level data were used to relate spatial trends determined using geochemistry and groundwater modeling with “on‐the‐ground” management practices, which vary based on acreage, crop, and irrigation scheduling. Increasing groundwater age determined using isotope analysis, and declines in potentiometric heads, each correlate with increasing distance from the canal reaches. Predictive modeling indicates that if pumping is gradually reduced, as has been suggested by management agencies, that recharge from canal seepage will be negligible by 2035 due to regional groundwater through‐flow and the pattern of potentiometric head recovery. Unfortunately, historic hydrographs suggest that under current groundwater development conditions most wells are not sustainable, irrespective of proximity to the canal.  相似文献   

16.
In 1988, the Florida Institute of Phosphate Research (FIPR) funded project to develop an advanced hydrologic model for shallow water table systems. The FIPR hydrologic model (FHM) was developed to provide an improved predictive capability of the interactions of surface water and ground water using its component models, HSPF and MODFLOW. The Integrated Surface and Ground Water (ISGW) model was developed from an early version of FHM and the two models were developed relatively independently in the late 1990s. Hydrologic processes including precipitation, interception, evapotranspiration, runoff, recharge, streamflow, and base flow are explicitly accounted for in both models. Considerable review of FHM and ISGW and their applications occurred through a series of projects. One model evolved, known as the Integrated Hydrological Model IHM. This model more appropriately describes hydrologic processes, including evapotranspiration fluxes within small distributed land‐based discretization. There is a significant departure of many IHM algorithms from FHM and ISGW, especially for soil water and evapotranspiration (ET). In this paper, the ET concepts in FHM, ISGW, and IHM will be presented. The paper also identifies the advantages and data costs of the improved methods. In FHM and IHM, ground water ET algorithms of the MODFLOW ET package replace those of HSPF (ISGW used a different model for ground water ET). However, IHM builds on an improved understanding and characterization of ET partitioning between surface storages, vadose zone storage, and saturated ground water storage. The IHM considers evaporative flux from surface sources, proximity of the water table to land surface, relative moisture condition of the unsaturated zone, thickness of the capillary zone, thickness of the root zone, and relative plant cover density. The improvements provide a smooth transition to satisfy ET demand between the vadose zone and deeper saturated ground water. While the IHM approach provides a more sound representation of the actual soil profile than FHM, and has shown promise at reproducing soil moisture and water table fluctuations as well as field measured ET rates, more rigorous testing is necessary to understand the robustness and/or limitations of this methodology.  相似文献   

17.
ABSTRACT: An approach, based on the realization of the vertical components of flow is presented to determine the free surface of gravity wells and the shape of salt-water upconing in artesian aquifers. The transitional stages from pumping fresh water to pumping salt water at the critical condition are discussed. Vertical hydraulic resistances, being determined and included in the flow domain, allow the use of the finite-difference approximation in a simple form. The suggested approach implies the use of either simple modeling or computing techniques.  相似文献   

18.
Under steady state conditions of flow, the seepage toward a single gravity well is governed by the Laplace Equation which may be written in terms of either the hydraulic head, the pressure head or the velocity potential. Although this equation is linear, the principle of superposition cannot be applied to sum up the individual effects in the case of a multiple gravity well system due to the variation of the flow domain under the effect of one or several wells. A method is presented allowing the use of the superposition principle in a restricted form. The superposition of the decrements of the base pressure heads than the initial heads before pumping is valid. Also the decrements in the areas of the pressure head diagrams across specific vertical sections than the original areas can be summed up together.  相似文献   

19.
Operational forecast models require robust, computationally efficient, and reliable algorithms. We desire accurate forecasts within the limits of the uncertainties in channel geometry and roughness because the output from these algorithms leads to flood warnings and a variety of water management decisions. The current operational Water Model uses the Muskingum-Cunge method, which does not account for key hydraulic conditions such as flow hysteresis and backwater effects, limiting its ability in situations with pronounced backwater effects. This situation most commonly occurs in low-gradient rivers, near confluences and channel constrictions, coastal regions where the combined actions of tides, storm surges, and wind can cause adverse flow. These situations necessitate a more rigorous flow routing approach such as dynamic or diffusive wave approximation to simulate flow hydraulics accurately. Avoiding the dynamic wave routing due to its extreme computational cost, this work presents two diffusive wave approaches to simulate flow routing in a complex river network. This study reports a comparison of two different diffusive wave models that both use a finite difference solution solved using an implicit Crank–Nicolson (CN) scheme with second-order accuracy in both time and space. The first model applies the CN scheme over three spatial nodes and is referred to as Crank–Nicolson over Space (CNS). The second model uses the CN scheme over three temporal nodes and is referred to as Crank–Nicolson over Time (CNT). Both models can properly account for complex cross-section geometry and variable computational points spacing along the channel length. The models were tested in different watersheds representing a mixture of steep and flat topographies. Comparing model outputs against observations of discharges and water levels indicated that the models accurately predict the peak discharge, peak water level, and flooding duration. Both models are accurate and computationally stable over a broad range of hydraulic regimes. The CNS model is dependent on the Courant criteria, making it less computational efficient where short channel segments are present. The CNT model does not suffer from that constraint and is, thus, highly computationally efficient and could be more useful for operational forecast models.  相似文献   

20.
ABSTRACT: As part of the Comprehensive Everglades Restoration Plan (CERP), various water supply projects have been proposed in a region located between the Miami metropolitan area and the extensive regional wetland systems that are part of the Everglades or remnant Everglades. A ground water flow model of the surficial aquifer within northern Miami‐Dade County was constructed using MODFLOW to evaluate the effects of these projects on water levels in the wetlands and the underlying surficial aquifer. The new Wetlands package was used to conjunctively simulate overland flow through these wetlands and the shallow ground water system. Comparisons of simulated to measured ground water levels and wetland stages were very satisfactory, where computed and measured water levels agreed within 0.5 ft over most of the period of record at nearly all of the monitoring sites. Temporal trends in water levels were also replicated. It was concluded that the assumptions and methodologies inherent to the Wetlands package were suitable for simulating regional wetland hydrology within the Everglades area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号