首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We present a 576‐year tree‐ring‐based reconstruction of streamflow for northern Utah's Weber River that exhibits considerable interannual and decadal‐scale variability. While the 20th Century instrumental period includes several extreme individual dry years, it was the century with the fewest such years of the entire reconstruction. Extended droughts were more severe in duration, magnitude, and intensity prior to the instrumental record, including the most protracted drought of the record, which spanned 16 years from 1703 to 1718. Extreme wet years and periods are also a regular feature of the reconstruction. A strong early 17th Century pluvial exceeds the early 20th Century pluvial in magnitude, duration, and intensity, and dwarfs the 1980s wet period that caused significant flooding along the Wasatch Front. The long‐term hydroclimatology of northern Utah is marked by considerable uncertainty; hence, our reconstruction provides water managers with a more complete record of water resource variability for assessment of the risk of droughts and floods for one of the largest and most rapidly growing population centers in the Intermountain West.  相似文献   

2.
ABSTRACT: A network of 32 drought sensitive tree‐ring chronologies is used to reconstruct mean water year flow on the Columbia River at The Dalles, Oregon, since 1750. The reconstruction explains 30 percent of the variability in mean water year (October to September) flow, with a large portion of unexplained variance caused by underestimates of the most severe low flow events. Residual statistics from the tree‐ring reconstruction, as well as an identically specified instrumental reconstruction, exhibit positive trends over time. This finding suggests that the relationship between drought and streamflow has changed over time, supporting results from hydrologic models, which suggest that changes in land cover over the 20th Century have had measurable impacts on runoff production. Low pass filtering the flow record suggests that persistent low flows during the 1840s were probably the most severe of the past 250 years, but that flows during the 1930s were nearly as extreme. The period from 1950 to 1987 is anomalous in the context of this record for having no notable multiyear drought events. A comparison of the flow reconstruction to paleorecords of the Pacific Decadal Oscillation (PDO) and El Nino/Southern Oscillation (ENSO) support a strong 20th Century link between large scale circulation and streamflow, but suggests that this link is very weak prior to 1900.  相似文献   

3.
ABSTRACT: Water resources are the lifeblood of the Near East region. Careful planning and management of water resources in dry land regions requires information on the likelihood of extreme events, especially prolonged drought. It is essential to understand the variability of climate on time scales of decades to centuries to assign reasonable probabilities to such events. Tree-ring analysis is one way to increase our knowledge of the climate variability beyond the short period covered by the instrumental data. In this paper, we reconstruct October-May precipitation from a Juniperus phoenicia tree-ring chronology in southern Jordan to gain a long-term (A.D. 1600–1995) perspective on runs of dry years and on time series fluctuations in precipitation averaged over several years. The reconstruction equation derived by regression of log-transformed precipitation on tree-ring indices explains 44 percent of the variance of observed precipitation. The longest reconstructed drought, as defined by consecutive years below a threshold of 217.4 mm, was four years, compared with three years for the 1946–95 instrumental data. A Monte Carlo analysis designed to account for uncertainty in the reconstruction indicates a lower than 50 percent chance that the region has experienced drought longer than five years in the past 400 years.  相似文献   

4.
ABSTRACT: Frequent and persistent droughts exacerbate the problems caused by the inherent scarcity of water in the semiarid to arid parts of the southwestern United States. The occurrence of drought is driven by climatic variability, which for years before about the beginning of the 20th century in the Southwest must be inferred from proxy records. As part of a multidisciplinary study of the potential hydrologic impact of severe sustained drought on the Colorado River, the physical basis and limitations of tree rings as indicators of severe sustained drought are reviewed, and tree-ring data are analyzed to delineate a “worst-case” drought scenario for the Upper Colorado River Basin (UCRB). Runs analysis of a 121-site tree-ring network, 1600–1962, identifies a four-year drought in the 1660s as the longest-duration large-scale drought in the Southwest in the recent tree-ring record. Longer tree-ring records suggest a much longer and more severe drought in 1579–1598. The regression estimate of the mean annual Colorado River flow for this period is 10.95 million acre-feet, or 81 percent of the long-term mean. The estimated flows for the 1500s should be used with caution in impact studies because sample size is small and some reconstructed values are extrapolations.  相似文献   

5.
This paper is concerned with regional frequency analysis of hydrologic multiyear droughts. A drought event is defined by three parameters: severity, duration, and magnitude. A method is proposed here to standardize drought severities with a duration adjustment to enable comparison among drought events. For purposes of a regional study, the index drought method is selected and applied to standardized droughts to give a regional frequency curve. However, the recurrence intervals of the drought events obtained from index drought method are limited to the historic period of record. Therefore, by taking advantage of random variations of droughts in both time and space, a multivariate simulation model is used to estimate exceedence probabilities associated with regional drought maxima. This method, named the regional extreme drought method, is capable of generating a series of drought events which, although they have not occurred historically, are more severe than historic events. By combining the results of the index drought method and regional extreme drought analysis, a regional drought probability graph is constructed which ranges from severe droughts to more frequent droughts. This procedure is applied to the mean annual flow records of streams located in the San Joaquin Valley of California, and drought-severity-frequency plots are prepared for 1-year, 2-year, and 3-year durations.  相似文献   

6.
ABSTRACT: Water resource planning is based primarily on 20th century instrumental records of climate and streamflow. These records are limited in length to approximately 100 years, in the best cases, and can reflect only a portion of the range of natural variability. The instrumental record neither can be used to gage the unusualness of 20th Century extreme low flow events, nor does it allow the detection of low‐frequency variability that may underlie short‐term variations in flow. In this study, tree rings are used to reconstruct mean annual streamflow for Middle Boulder Creek in the Colorado Front Range, a semi‐arid region of rapid growth and development. The reconstruction is based on a stepwise regression equation that accounts for 70 percent of the variance in the instrumental record, and extends from 1703–1987. The reconstruction suggests that the instrumental record of streamflow for Middle Boulder Creek is not representative of flow in past centuries and that several low flow events in the 19th century were more persistent than any in the 20th century. The 1840s to early 1850s period of low flow is a particularly notable event and may have coincided with a period of low flow in the Upper Colorado River Basin.  相似文献   

7.
ABSTRACT: The Palmer Drought Severity Index, which is intended to be of reasonable comparable local significance both in space and time, has been extensively used as a measure of drought for both agricultural and water resource management. This study examines the spatial comparability of Palmer's (1965) definition of severe and extreme drought. Index values have been computed for 1035 sites with at least 60 years of record that are scattered across the contiguous United States, and quantile values corresponding to a specified index value were calculated for given months and then mapped. The analyses show that severe or extreme droughts, as defined by Palmer (1965), are not spatially comparable in terms of identifying rare events. The wide variation across the country in the frequency of occurrence of Palmer's (1965) extreme droughts reflects the differences in the variability of precipitation, as well as the average amount of precipitation. It is recommended first, that a drought index be developed which considers both variability and averages; and second, that water resource managers and planners define a drought in terms of an index value that corresponds to the expected quantile (return period) of the event.  相似文献   

8.
Abstract: Repeated severe droughts over the last decade in the South Atlantic have raised concern that streamflow may be systematically decreasing, possibly due to climate variability. We examined the monthly and annual trends of streamflow, precipitation, and temperature in the South Atlantic for the time periods: 1934‐2005, 1934‐1969, and 1970‐2005. Streamflow and climate (temperature and precipitation) trends transitioned ca. 1970. From 1934 to 1969, streamflow and precipitation increased in southern regions and decreased in northern regions; temperature decreased throughout the South Atlantic. From 1970 to 2005, streamflow decreased, precipitation decreased, and temperature increased throughout the South Atlantic. It is unclear whether these will be continuing trends or simply part of a long‐term climatic oscillation. Whether these streamflow trends have been driven by climatic or anthropogenic changes, water resources management faces challenging prospects to adapt to decadal‐scale persistently wet and dry hydrologic conditions.  相似文献   

9.
ABSTRACT: The concept of recurrence interval has been used for years in engineering designs. Can the same concept be applied to the drought analysis? This paper uses the plotting position method to define drought of various recurrence intervals based on stream-flow data. The method of truncation level was applied to the same data to examine the defined drought. Based on the method of truncation level, drought duration and its corresponding flow deficit were investigated. Eighteen flow gage stations from the Scioto River Basin in Ohio were selected for the study. The results show that flows of 100-year droughts using the plotting position method are practically nil. On the other hand, flows of droughts using the truncation method are gradually decreasing with an increase in truncation level, where flows of 95 percent are approximately equal to those of two-year droughts defined by the plotting position. It is also shown that there is a strung correlation between drought duration and deficit.  相似文献   

10.
Gray, Stephen T., Jeffrey J. Lukas, and Connie A. Woodhouse, 2011. Millennial‐Length Records of Streamflow From Three Major Upper Colorado River Tributaries. Journal of the American Water Resources Association (JAWRA) 47(4):702‐712. DOI: 10.1111/j.1752‐1688.2011.00535.x Abstract: Drought, climate change, and shifting consumptive use are prompting a widespread reassessment of water availability in the Upper Colorado River basin. Here, we present millennial‐length records of water year (October‐September) streamflow for key Upper Colorado tributaries: the White, Yampa, and Little Snake Rivers. Based on tree rings, these records represent the first paleohydrological reconstructions from these subbasins to overlap with a series of Medieval droughts (∼ad 800 to 1300). The reconstructions show marked interannual variability imbedded in nonstationary behavior over decadal to multidecadal time scales. These reconstructions suggest that, even in a millennial context, gaged flows from a handful of years (e.g., 1977 and 2002) were extremely dry. However, droughts of much greater duration and magnitude than any in the instrumental record were regular features prior to 1900. Likewise these reconstructions point to the unusual wetness of the gage period, and the potential for recent observations to paint an overly optimistic picture of regional water supplies. The future of the Upper Colorado River will be determined by a combination of inherent hydroclimatic variability and a broad range of human‐induced changes. It is then essential that regional water managers, water users, and policy makers alike consider a broader range of hydroclimatic scenarios than is offered by the gage record alone.  相似文献   

11.
Abstract: A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream‐to‐aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30‐year model‐simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground‐water insurance to sustain California during extended dry periods.  相似文献   

12.
In recent decades, significant progress has been made toward reconstructing the past climate record based on environmental proxies, such as tree rings and ice core records. However, limited examples of research that utilizes such data for water resources decision-making and policy exist. Here, we use the reconstructed record of Palmer Drought Severity Index (PDSI), dating back to 1138AD to understand the nature of drought occurrence (severity and duration) in the state of Maine. This work is motivated by the need to augment the scientific basis to support the water resources management and the emerging water allocation framework in Maine (Maine Department of Environmental Protection, Chapter 587). Through a joint analysis of the reconstructed PDSI and historical streamflow record for twelve streams in the state of Maine, we find that: (a) the uncertainties around the current definition of natural drought in the Chapter 587 (based on the 20th century instrumental record) can be better understood within the context of the nature and severity of past droughts in this region, and (b) a drought index provides limited information regarding at-site hydrologic variations. To fill this knowledge gap, a drought index-based risk assessment methodology for streams across the state is developed. Based on these results, the opportunities for learning and challenges facing water policies in a changing hydroclimate are discussed.  相似文献   

13.
The impact of drought on water resources in arid and semiarid regions can be buffered by water supplies from different source regions. Simultaneous drought in all major source regions — or perfect drought — poses the most serious challenge to water management. We examine perfect droughts relevant to Southern California (SoCal) water resources with instrumental records and tree‐ring reconstructions for the Sacramento and Colorado Rivers, and SoCal. Perfect droughts have occurred five times since 1906, lasting two to three years, except for the most recent event, 2012–2015. This number and duration of perfect droughts is not unusual in the context of the past six centuries. The modern period stands out for the relatively even distribution of perfect droughts and lacks the clusters of perfect drought documented in prior centuries. In comparison, perfect droughts of the 12th Century were both longer (up to nine years) and more widespread. Perfect droughts of the 20th and 21st Centuries have occurred under different oceanic/atmospheric patterns, zonal and meridional flow, and ENSO or non‐ENSO conditions. Multidecadal coherence across the three regions exists, but it has varied over the past six centuries, resulting in irregular intervals of perfect drought. Although the causes of perfect droughts are not clear, given the long‐term natural variability along with projected changes in climate, it is reasonable to expect more frequent and longer perfect droughts in the future.  相似文献   

14.
ABSTRACT: The impacts of a severe sustained drought on Colorado River system water resources were investigated by simulating the physical and institutional constraints within the Colorado River Basin and testing the response of the system to different hydrologic scenarios. Simulations using Hydrosphere's Colorado River Model compared a 38-year severe sustained drought derived from 500 years of reconstructed streamflows for the Colorado River basin with a 38-year streamflow trace extracted from the recent historic record. The impacts of the severe drought on streamflows, water allocation, storage, hydropower generation, and salinity were assessed. Estimated deliveries to consumptive uses in the Upper Basin states of Colorado, Utah, Wyoming, New Mexico, and northern Arizona were heavily affected by the severe drought, while the Lower Basin states of California, Nevada, and Arizona suffered only slight shortages. Upper Basin reservoirs and streamflows were also more heavily affected than those in the Lower Basin by the severe drought. System-wide, total hydropower generation was 84 percent less in the drought scenario than in the historical stream-flow scenario. Annual, flow-weighted salinity below Lake Mead exceeded 1200 ppm for six years during the deepest portion of the severe drought. The salinity levels in the historical hydrology scenario never exceeded 1100 ppm.  相似文献   

15.
Streamflow monitoring in the Colorado River Basin (CRB) is essential to ensure diverse needs are met, especially during periods of drought or low flow. Existing stream gage networks, however, provide a limited record of past and current streamflow. Modeled streamflow products with more complete spatial and temporal coverage (including the National Water Model [NWM]), have primarily focused on flooding, rather than sustained drought or low flow conditions. Objectives of this study are to (1) evaluate historical performance of the NWM streamflow estimates (particularly with respect to droughts and seasonal low flows) and (2) identify characteristics relevant to model inputs and suitability for future applications. Comparisons of retrospective flows from the NWM to observed flows from the United States Geological Survey stream gage network over 22 years in the CRB reveal a tendency for underestimating low flow frequency, locations with low flows, and the number of years with low flows. We found model performance to be more accurate for the Upper CRB and at sites with higher precipitation, snow percent, baseflow index, and elevations. Underestimation of low flows and variable model performance has important implications for future applications: inaccurate evaluations of historical low flows and droughts, and less reliable performance outside of specific watershed/stream conditions. This highlights characteristics on which to focus future model development efforts.  相似文献   

16.
We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree‐ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree‐ring chronologies where high snowpack limits growth, which better represent the contribution of cool‐season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high‐intensity, long‐duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s‐1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm‐season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late‐19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands.  相似文献   

17.
Tingstad, Abbie H. and Glen M. MacDonald, 2010. Long-Term Relationships Between Ocean Variability and Water Resources in Northeastern Utah. Journal of the American Water Resources Association (JAWRA) 46(5):987-1002. DOI: 10.1111/j.1752-1688.2010.00471.x Abstract: The Uinta Mountains in the northwestern Colorado River Basin are an important source of water for Utah and the western United States. This article examines 20th Century hydrology in the Uinta Mountains region in the context of the previous four to eight centuries as well as possible relationships with Pacific and Atlantic Ocean variability using new tree-ring based reconstructions for streamflow and snowpack. The 20th Century appears to have been unusually wet compared with previous centuries. Relationships between hydrology in the region and the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) are largely insignificant in instrumental datasets but may have been stronger, although inconsistent, over the longer time spans represented by the paleoclimate records. Impacts of individual modes of sea surface temperature variability may sometimes be enhanced by periods when climate forcing by ENSO, PDO, and/or AMO coincide. Such episodes are associated with deviations from mean hydrology as high as +14% and as low as −18%. The 20th Century could be a misleading benchmark to base water resource estimates upon and flexible water management strategies are necessary to take into account the large range of natural variability observed in the longer-term hydroclimatology as well as the challenges to predictability due to the apparently complex and inconsistent influence of ocean-driven variability.  相似文献   

18.
ABSTRACT: In arid regions of rapid economic and population growth, adverse effects of droughts are likely to be increasingly serious. This article presents an introduction and overview of the papers collected in this special issue of the Water Resources Bulletin. The papers report on the second phase of a study of the impacts of and responses to a potential severe sustained drought in the Colorado River Basin in the southwestern U.S. The analyses were performed by a consortium of researchers from universities and the private sector located throughout the Basin. Tree ring studies suggest that droughts of duration and magnitude much more serious than any found in the modern records probably occurred in the Basin during earlier centuries. Taking the present-day configuration of the storage and diversion structures and the economic conditions in the Basin as the base-point, the general objectives of the study are three: first, to define a representative Severe Sustained Drought (SSD) and assess its hydrologic impacts; second, to forecast the economic, social and environmental impacts on the southwestern U.S.; and finally, to assess alternative institutional arrangements for coping with an SSD. The evaluation of impacts and policies was conducted with two distinct modeling approaches. One involved hydrologic-economic optimization modeling where water allocation institutions are decision variables. The second was a simulation-gaming approach which allowed “players” representing each basin state to interact in a real-time decision making mode in response to the unfolding drought.  相似文献   

19.
Securing sustainable livelihood conditions and reducing the risk of outmigration in savanna ecosystems hosted in the tropical semiarid regions is of fundamental importance for the future of humanity in general. Although precipitation in tropical drylands, or savannas, is generally more significant than one might expect, these regions are subject to considerable rainfall variability which causes frequent periods of water deficiency. This paper addresses the twin problems of “drought and desertification” from a water perspective, focusing on the soil moisture (green water) and plant water uptake deficiencies. It makes a clear distinction between long‐term climate change, meteorological drought, and agricultural droughts and dry spells caused by rainfall variability and land degradation. It then formulates recommendations to better cope with and to build resilience to droughts and dry spells. Coping with desertification requires a new conceptual framework based on green‐blue water resources to identify hydrological opportunities in a sea of constraints. This paper proposes an integrated land/water approach to desertification where ecosystem management supports agricultural development to build social‐ecological resilience to droughts and dry spells. This approach is based on the premise that to combat desertification, focus should shift from reducing trends of land degradation in agricultural systems to water resource management in savannas and to landscape‐wide ecosystem management.  相似文献   

20.
Drought has been less extensively characterized in the humid South Atlantic compared to the arid western United States. Our objective was to characterize drought in the South Atlantic and to understand whether drought has become more severe in this region over time. Here we used monthly streamflow to characterize hydrological drought. Hydrological drought occurred when streamflow fell below the 20th percentile over three consecutive months and terminated once streamflow remained above the 20th percentile for three consecutive months. We characterized the frequency, duration, magnitude, and severity of events using the above definition. Significant changes in drought characteristics were tested with Mann‐Kendall over three periods: 1930‐2010, 1930‐1969, and 1970‐2010. We show that 71% of drought events were shorter than six months, while 7% were multiyear events. There was little evidence of trends in drought characteristics to support the claim of drought becoming more severe in the South Atlantic over the 20th Century. The one exception was a significant increase in the joint probability of nearby basins being simultaneously in drought conditions in the southern portion of the study area from 1970 to 2010. While drought characteristics have changed little through time, decreasing average streamflow in non drought periods coupled with increasing water demand provide the context within which recent multiyear drought events have produced significant stress on existing water infrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号