首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DO对同步硝化反硝化影响及动力学   总被引:18,自引:0,他引:18  
研究生物接触氧化法中DO对同步硝化反硝化系统脱氮效率的影响。研究结果表明:在溶解氧(DO)为1.0~3.0mg/L范围内,随着反应器内溶解氧浓度的降低,总脱氮去除率提高,保持较好脱氮率的最佳DO为2mg/L左右,并分析了其原因;同时探讨了DO为2mg/L时的动力学方程。  相似文献   

2.
COD与DO对好氧颗粒污泥同步硝化反硝化脱氮的影响   总被引:27,自引:0,他引:27  
COD和DO浓度对好氧颗粒污泥的同步硝化反硝化反应有明显影响.COD浓度在400~1200mg/L范围内,好氧颗粒污泥去除COD的能力均在85%以上.颗粒污泥能吸附有机物,使废水中COD浓度快速下降.COD浓度小于800mg/L,好氧颗粒污泥具有良好的脱氮能力,氮去除率最高达85.3%.在溶氧浓度为1-4mg/L条件下,颗粒污泥对COD去除率均在90%以上.不同的溶氧浓度对氮的去除率有一定影响,在溶氧浓度3mg/L时,氮去除率最高,达83%.图7参7  相似文献   

3.
以模拟生活污水为研究对象,控制SBR反应器内pH值在7.5~8.5的条件下,实现了短程硝化生物脱氮工艺,NO2--N/NOx--N的比率始终维持在90%以上,同时发现pH值和DO浓度变化特征曲线在短程硝化过程中具有良好的重现性。另外,保持DO浓度在0.5~1.0mg/L,硝化时间为5.5h,可较好的维持短程硝化生物脱氮过程,且经过1个月的运行硝化类型没有发生改变,亚硝酸盐积累率仍保持在90%以上。在此基础上,研究了系统对COD和NH4+-N浓度的抗冲击负荷能力。结果表明,该系统具有较强的抗冲击能力。  相似文献   

4.
采用强化生物絮凝工艺处理生活污水,试验结果验证了好氧反硝化的存在;好氧反硝化的效率依赖三个因素:溶解氧浓度、絮体大小、有效碳源。低溶解氧质量浓度有利于好氧反硝化脱氮,当ρ(DO)为0.5mg·L-1时,TN去除率达到57.7%。结合理论分析,对好氧反硝化的机理以及影响因素进行了探讨。  相似文献   

5.
溶解氧及活性污泥浓度对同步硝化反硝化的影响   总被引:53,自引:1,他引:52  
文章研究溶解氧及活性污泥浓度对同步硝化反硝化效率的影响。研究结果表明:在一定DO范围内,随着反应器内溶解氧浓度的降低,总氮去除率呈上升趋势,即好氧反硝化效率随溶解氧浓度的降低而提高;在一定MLSS范围内,反应器内混合液污泥浓度越高,出水总氮越低,反硝化现象越明显。  相似文献   

6.
常温SBR厌氧-好氧反应器的短程硝化   总被引:2,自引:0,他引:2  
短程硝化-反硝化是污水节能脱氮新技术之一,其关键在于实现短程硝化,而水温是控制短程硝化的主要因素。在生活污水氨氮浓度小于100mg/L的水质条件下,采用SBR厌氧-好氧反应器进行了常温短程硝化试验研究。研究结果表明,水温14.5℃~16.5℃的条件下,在好氧段可以实现短程硝化,亚硝化率达到了94.9%。亚硝化的程度还与曝气时间的长短有关,曝气时间短时,可以将氨氧化控制在亚硝化阶段,积累大量的亚硝酸盐,但是氨转化率比较低;曝气时间延长,氨氮去除率增加,同时部分亚硝酸氮会被进一步氧化成硝酸氮。该研究结果打破了只有在中高温条件下才能实现短程硝化的普遍看法,从而为在常温下实现短程硝化提供了新的依据。  相似文献   

7.
在面源低污染水的原位修复领域,人工湿地生物脱氮过程受温度、p H波动影响以及NO2--N积累抑制反硝化脱氮效果等问题,因此强化系统脱氮性能在实际工程应用中具有重要意义。固定化微生物技术具有环境变化适应能力以及耐毒害能力强等优点。该研究通过分离筛选高效反硝化菌,对其进行DNA序列分析鉴定及其种属和系统发育地位分析,并以包埋法加以固定,考察固定化反硝化菌在不同温度、p H、DO和C/N下的反硝化性能,分析各因素变化对固定化反硝化菌脱氮效果的影响,探究各影响因素对固定化反硝化菌脱氮性能的作用机理,以期为固定化反硝化菌强化人工湿地脱氮性能提供参考。经反硝化能力测定,筛选得到的高效反硝化菌株对NO3--N、TN的去除率分别为98.83%、98.36%,NO2--N积累量仅为0.28mg·L~(-1),24 h内脱氮效率为8.59 mg·L~(-1)·h~(-1),经16S r RNA测序结果表明该菌株与Pseudomonas stutzeri A1501的最大相似度为99.7%。采用PVA、SA为材料包埋固定该菌株,固定化反硝化菌的生物量为15.67 g·L~(-1),颗粒密度为0.93 g·m L~(-1)。通过对固定化反硝化菌处理低污染水的性能研究得知,p H、T、DO的波动对固定化反硝化菌的脱氮效果影响均小于游离反硝化菌,固定化反硝化菌在p H为7,θ为30℃,DO为0.87~1.54 mg·L~(-1),C/N为5时的脱氮效果最好。  相似文献   

8.
优势菌种硝化新工艺处理垃圾渗滤液的研究   总被引:2,自引:0,他引:2  
李平 《生态环境》2005,14(4):545-548
通过摇瓶富集与开放体系扩大培养获得高含量的硝化细菌优势菌液,用于硝化反应器的强化挂膜启动、驯化。采用优势菌种生物硝化新工艺研究了含高质量浓度氨氮垃圾渗滤液的硝化特性,并对工艺条件进行了优化。结果表明,优势菌液中亚硝化细菌与硝化细菌的含量分别达到9.0×107和3.5×107MPN/mL。实际废水动态运行的结果显示,当进水垃圾渗滤液平均氨氮质量浓度为284.4mg/L时,出水平均氨氮质量浓度为14.3mg/L,硝化速率高达NH4+-N28.1g/(m3.h),与传统硝化工艺相比高出近一倍。本工艺处理垃圾渗滤液的优化操作工艺条件为:pH、氨氮质量浓度及DO分别控制在7.5~8.5、300mg/L、1.1~2.6mg/L。  相似文献   

9.
序批式膜反应器处理高氨氮渗滤液同步硝化反硝化特性   总被引:1,自引:1,他引:0  
应用序批式生物膜反应器(SBBR)处理实际垃圾渗滤液,在DO浓度分别为0.45mg.l-1和1.19mg.l-1条件下,研究了系统的有机物,氨氮和总氮去除特性以及游离氨(FA),DO对系统同步硝化反硝化(SND)类型的影响.250d试验研究表明:SBRR系统能够稳定高效地同步去除渗滤液内高浓度有机物和高浓度氨氮.在初始COD浓度为122—2385 mg.l-1的情况下,出水COD浓度为23—929 mg.l-1,有机物最大去除速率25.6 kgCOD.m-2载体.d-1.在初始NH4+-N浓度为40—396.5 mg.l-1的情况下,出水NH4+-N浓度为0—41.2 mg.l-1,最大硝化速率2.87 kgN.m-2载体.d-1.SBBR系统内发生了明显的同步硝化反硝化(SND)现象,TN平均去除率分别为73.8%(DO=0.45 mg.l-1)和30%(DO=1.19 mg.l-1)左右.当FA浓度在1.5—11.6 mg.l-1范围内时,系统中共存硝酸型SND和亚硝酸性SND.当FA从18.6 mg.l-1增加到56 mg.l-1,系统中形成稳定的亚硝酸SND.因此,FA是影响系统SND类型的主要因素,DO可促进亚硝酸性SND向硝酸型SND转化.  相似文献   

10.
一种新的好氧反硝化菌筛选方法的建立及新菌株的发现   总被引:29,自引:0,他引:29  
利用间歇曝气富集,氰化钾(KCN)选择培养基筛选好氧反硝化的细菌,通过形态学特征、生理生化反应及16SrDNA同源性比较对筛得菌株进行鉴定,并对其好氧反硝化相关基因napA进行扩增并测序比较.筛选到一株可以柠檬酸钠为碳源,硝酸钾为氮源,进行好氧反硝化的细菌.在溶解氧(DO)为(9.0±0.5)mg/L的培养基中,该菌株5 d内将硝态氮由282.0 mg L-1降解至149.2 mg L-1,其硝态氮去除率为46.47 ng mg-1min-1,同时亚硝态氮仅有少量的积累.经鉴定,初步判定它为假单胞菌属,命名为Pseudomonas sp.Y2-1-1.从其基因组中扩增出与好氧反硝化相关的周质硝酸盐还原酶(NAR)的亚基napA基因,并与已报道的napA基因进行Blast比较,发现具有较大差别.利用间歇曝气富集,氰化钾(KCN)选择培养基筛选好氧反硝化的细菌是非常有效的.初步认为Pseudomonas sp.Y2-1-1是一株新的好氧反硝化菌.图6表3参12  相似文献   

11.
好氧异养硝化菌Acinetobacter sp.YY-5的分离鉴定及脱氮机理   总被引:1,自引:0,他引:1  
通过异养硝化培养基获得一株高效脱氮细菌,并通过形态学特征、生理生化反应及16S rDNA同源性比较对筛得菌株进行了鉴定;分别以NO3--N和NO2--N为唯一氮源,通过对脱氮过程中各种含氮代谢物的定量及对脱氮相关基因氨单加氧酶基因(amoA)、羟胺氧化酶基因(hao)、周质硝酸盐还原酶亚基基因(napA)的扩增及测序比较,对该菌株的生理途径及脱氮机理进行了研究.结果表明,高效脱氮细菌YY-5不能发生好氧反硝化,但能在3 d内将氨氮由95.23 mg/L降解至1.29 mg/L,降解率达妻98.6%,同时未发现亚硝酸盐氮、硝酸盐氮积累;对该菌主要代谢气体产物进行检测,发现CO2和N2明显增多,无N2O生成;经鉴定,初步判定该菌为不动杆菌属,命名为Acinetobacter sp.YY-5;从该菌基因组中均能扩增出amoA、hao、napA等基因,其中napA与hao基因与已报道的napA与hao基因进行Blaster较,发现具有较大差别.图6表3参15  相似文献   

12.
OLAND生物脱氮系统运行及其硝化菌群的分子生物学检测   总被引:5,自引:0,他引:5  
采用两阶段限氧自养硝化 -反硝化生物脱氮系统 (oxygen limitedautotrophicnitrificationanddenitrificationsystem ,以下简称OLAND)处理高氨氮、低COD的废水 .应用内浸式多聚醚砜中空膜 ,实现了污泥的完全截留 ,阻止了生物量的大量洗脱 ,并通过控制溶氧在 0 .1~ 0 .3mgL-1之间 ,实现了硝化阶段出水中氨氮与亚硝态氮浓度的比例达到最适值〔1 (1.2± 0 .2 )〕 ,从而为第二阶段的厌氧氨氧化提供理想的进水 ,进而获得较高的脱氮率 .同时应用荧光原位杂交技术对硝化阶段不同时期硝化菌群的变化进行分子生物学检测 ,揭示了随溶氧浓度的降低 ,氨氧化菌的数量基本保持恒定、亚硝酸氧化菌的数量略有减少的变化规律 ,并且发现 ,在两阶段限氧自养硝化 -反硝化生物脱氮系统中氨氮的氧化主要是由Nitrosomonassp .完成 ,亚硝酸的氧化主要由Nitrobactersp .完成 .图 4表 2参 2 2  相似文献   

13.
氮沉降影响土壤氮循环,而凋落物是土壤有机氮的主要来源,因此,为了探讨氮沉降和凋落物是否去除作用下,亚热带森林土壤潜在的氮素矿化与硝化作用,选择已进行8年模拟氮沉降试验的亚热带罗浮栲(Castanopsis fabri)常绿阔叶林土壤为研究对象,野外样地氮添加设置3个水平:对照(CK,0 kg·hm?2·a?1)、低氮(LN,75 kg·hm?2·a?1)、高氮(HN,150 kg·hm?2·a?1),两种凋落物管理方式(保留凋落物,L和去除凋落物,R),土壤采样后,通过室内间歇淋洗好气培养法,研究土壤氮素矿化潜势差异,以及不同底物条件下(铵态氮水平:N 0,100、150、200 mg·kg?1)土壤硝化潜势的差异。结果表明:土壤氮素快速矿化主要在培养前7 d,矿化累积量(Nt)为102.81—153.71 mg·kg?1,矿化潜势(N0)范围为193.84—289.80 mg·kg?1,N0依次为:保留凋落物低氮(LN-L)>保留凋落物对照(CK-L)>去除凋落物低氮(LN-R)>去除凋落物对照(CK-R)>去除凋落物高氮(HN-R)>保留凋落物高氮(HN-L);两种凋落物处理方式下,LN水平土壤的Nt与N0均高于CK、HN。保留凋落物情况下,有较高的土壤硝化潜势;在无添加硝化底物(铵态氮水平为N 0 mg·kg?1)的条件下,野外氮添加水平高的土壤硝化潜势也高;而在添加不同硝化底物(铵态氮)的条件下,土壤硝化潜势并未随硝化底物水平的增加而增加,且硝化底物水平为N 100 mg·kg?1时硝化潜势最大。研究表明,虽然保留凋落物可以增加土壤氮矿化潜势,而氮沉降则影响氮矿化潜势。当研究土壤硝化潜势时,应当根据土壤类型等因素选择合适的硝化底物(铵态氮)添加量。  相似文献   

14.
异养硝化微生物菌剂及其好氧颗粒污泥的脱氮试验   总被引:1,自引:0,他引:1  
在3个相同的反应器(No.1、No.2、No.3)中,向活性污泥中投加异养硝化微生物菌剂,以批次试验和SBR试验的方式,研究了异养硝化微牛物菌剂对模拟废水的处理效果.结果表明,该菌剂可以大幅度提高活性污泥对氨氮和COD的去除率.批次运行试验中,反应器No.1运行3 d,氨氮去除率大于98.11%,COD去除率大于99%.该投加菌剂的活性污泥每克干污泥的脱氮能力为15.77 mg d-1.以SBR方式运行16 d的试验中,可能是由于功能菌株的流失导致3个反应器的脱氮效果有逐步降低的趋势.采用该异养硝化脱氮微生物菌剂培育出的异养硝化好氧颗粒污泥对模拟废水进行了脱氮试验.在较低运行温度(11~13℃)下以SBR方式运行10 d,反应器处理效果稳定,氨氮去除率70.75%~76.42%,COD去除率在90%以上.该异养硝化好氧颗粒污泥每克干颗粒的脱氮能力为372.00 mg d-1.以上试验都没有发现硝酸氮和亚硝酸氮的积累.图5表1参19  相似文献   

15.
水库贫营养异养硝化-好氧反硝化菌Sxf14的脱氮特性   总被引:1,自引:0,他引:1  
为利用生物强化法降低微污染源水中的氮素,从水库沉积物中筛选到一株好氧反硝化细菌Sx f14.通过扫描电镜和16S r RNA序列分析,鉴定其为不动杆菌属(Acinetobacter sp.),命名为Acinetobacter sp.Sxf14.同时,对该菌株脱氮特性进行研究,并将其接种到C/N(总有机碳与总氮的比值)为1.2的微污染水库源水中,以探究其对实际源水总氮的去除效果.结果显示:Sxf14能以硝酸盐和亚硝酸盐为唯一氮源进行好氧反硝化.反应48 h后,NO3--N和NO2--N的去除率分别达74.84(±0.86)%和40.52(±1.49)%,TN去除率最高达到65.07(±1.56)%和41.33(±0.98)%;在以NH4Cl为氮源的异养硝化系统内,该菌在48 h内使NH4+-N浓度由3.73(±0.08)mg/L降到1.28(±0.20)mg/L,氨氮去除率达到65.63(±1.39)%.72 h内,微污染水库源水的TN浓度由2.46(±0.02)mg/L降到1.68(±0.01)mg/L,去除率达到31.7(±0.14)%.因此,菌株Acinetobacter sp.Sxf14具有反硝化能力,能承受较低的碳氮比,降低微污染源水中的氮素,本研究可为微污染水体的菌剂修复技术提供科学依据.  相似文献   

16.
孙英杰  吴昊  王亚楠 《生态环境》2011,20(2):384-388
结合N2O的产生机理,分析温度、含水率、NO2--N和底物质量浓度、pH和碱度、O2以及基质等因素对N2O释放的影响,试图探讨不同因素对N2O释放的影响规律,以期对生化过程中N2O的控制提供理论和技术支持。N2O的释放是温度、含水率、C/N、O2浓度、反应底物质量浓度、基质以及传输过程交互作用的结果。含水率、C/N、基质及温度等可通过不同途径影响溶解氧的质量浓度而影响N2O释放量;pH、NO2--N、NH3-N及温度等通过影响硝化、反硝化细菌的活性或对各阶段酶的抑制作用而影响N2O释放;土壤利用类型、植被种类、污水脱氮过程各参数等,会间接影响硝化和反硝化过程从而影响N2O的释放。  相似文献   

17.
肖羽堂  吕晓龙 《生态环境》2006,15(2):212-215
为去除微污染原水中的NO2--N和提高水厂的饮水安全性,采用弹性填料微孔曝气富氧生物硝化法处理某微污染水源原水,探讨了原水不同水质及天然水体温度下富氧生物硝化工艺的除NO2--N效果,研究了水温与富氧生物硝化工艺NO2--N去除效果的相关性。结果表明,当富氧生物硝化工艺正常稳定运行HRT为1.2h,气水比为1∶1,pH6.5~7.4,DO为8~10mg·L–1,原水水温26~30℃、NO2--N0.05~0.4mg·L–1、NH4 -N0.4~1.8mg·L–1和CODMn7.01~9.61mg·L–1时,富氧生物硝化工艺NO2--N的去除率为77%~100%;原水水温20~22℃、NO2--N0.09~0.5mg·L–1、NH4 -N0.7~2.5mg·L–1和CODMn5.84~9.11mg·L–1时,去除率为44%~63%;原水水温10~12℃、NO2--N0.04~0.8mg·L–1、NH4 -N0.9~4.5mg·L–1·和CODMn6.53~9.27mg·L–1时,去除率为25%~40%。原水水温与富氧生物硝化工艺NO2--N去除率呈现明显的线性相关性,相关方程为:y=3.3628x-9.528,相关系数为0.8744。  相似文献   

18.
邯郸西污水厂处理工艺的优化控制   总被引:1,自引:0,他引:1  
由于实际进水水质与设计值有偏差,造成采用改良氧化沟工艺的邯郸市西污水处理厂,运行管理困难且费用较高。针对该厂的实际运行情况,探讨了曝气系统的溶解氧(DO)、混合液污泥浓度(MLSS)、泥龄等运行参数的控制问题,并对各参数进行了分析、优化调整。结果显示:该厂好氧区出水DO控制在2.5~3.5 mg/L,缺氧区DO控制在0.3~0.7 mg/L时,可保证良好的除磷效果;将MLSS控制在5000 mg/L左右,并通过排泥将泥龄控制在16~19 d时,氧化沟系统可在最低运行能耗下获得最优硝化、脱氮效果;避免过多的硝酸盐随回流污泥进入厌氧选择池也是该系统工艺控制的关键,适宜的进水BOD5/TN比值以及稳定可靠的反硝化控制,可进一步提高该系统的处理效果,尤其是脱氮效果。  相似文献   

19.
好氧反硝化菌及其在生物处理与修复中的应用研究进展   总被引:5,自引:0,他引:5  
好氧反硝化菌因其生长特性与同步异养硝化好氧反硝化功能,为环境生物脱氮提供了崭新的技术思路.综述了已分离获得的好氧反硝化菌类群及其生长特性,重点阐述了好氧反硝化菌生物脱氮性能、影响因素与好氧反硝化机理,探讨了好氧反硝化在环境生物修复领域的应用.已有研究表明,好氧反硝化菌在环境生物脱氮方面具有明显的技术优势,但有关好氧反硝化反应机理、影响因素等仍待解析,以期为好氧反硝化菌固定化、活性持留以及受污染环境水体修复等研究提供理论依据.  相似文献   

20.
投加硝化菌的活性污泥工艺硝化效率特性   总被引:5,自引:0,他引:5  
何成达 《环境化学》2002,21(6):581-583
研究了在活性污泥工艺中用投加硝化菌的方法提高硝化效率的特性,试验用富氮废水生成硝化污泥,并将其剩余硝化污泥投加于处理初沉市政污水的活性污泥工艺试验装置,研究结果表明,投加硝化菌能降低常规活性污泥工艺硝化的泥龄要求、改善硝化效果以及减少为低温稳定运行而增加的硝化反应器容积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号