首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Samples of soil, water, and sediments from industrial estates in Lagos were collected and analyzed for heavy metals and physicochemical composition. Bacteria that are resistant to elevated concentrations of metals (Cd2?+?, Co2?+?, Ni2?+?, Cr6?+?, and Hg2?+?) were isolated from the samples, and they were further screened for antibiotic sensitivity. The minimum tolerance concentrations (MTCs) of the isolates with dual resistance to the metals were determined. The physicochemistry of all the samples indicated were heavily polluted. Twenty-two of the 270 bacterial strains isolated showed dual resistances to antibiotics and heavy metals. The MTCs of isolates to the metals were 14 mM for Cd2?+?, 15 mM for Co2?+? and Ni2?+?, 17 mM for Cr6?+?, and 10 mM for Hg2?+?. Five strains (Pseudomonas aeruginosa, Actinomyces turicensis, Acinetobacter junni, Nocardia sp., and Micrococcus sp.) resisted all the 18 antibiotics tested. Whereas Rhodococcus sp. and Micrococcus sp. resisted 15 mM Ni2?+?, P. aeruginosa resisted 10 mM Co2?+?. To our knowledge, there has not been any report of bacterial strains resisting such high doses of metals coupled with wide range of antibiotics. Therefore, dual expressions of antibiotics and heavy-metal resistance make the isolates, potential seeds for decommissioning of sites polluted with industrial effluents rich in heavy metals, since the bacteria will be able to withstand in situ antibiosis that may prevail in such ecosystems.  相似文献   

2.
We studied the susceptibility patterns to 15 different antibiotics and six heavy metals in Aeromonas spp. and Pseudomonas spp. isolated from Iskenderun Bay, Turkey (northeast Mediterranean Sea). A high percentage of Aeromonas isolates showed resistance to cefazolin (66.6%) and trimethoprim–sulphamethoxazole (66.6%). Amongst the Pseudomonas isolates, there was a high incidence of resistance to nitrofurantoin (86.2%), cefazolin (84.8%) and cefuroxime (71.7%). Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 25 to >3,200 μg/ml. The Aeromonas spp. and Pseudomonas spp. showed high resistance to copper of 98.3% and 75.4%, respectively, and low resistance to lead of 1.7% and 7.2%, respectively. Our results show that antibiotic and heavy metal resistant Aeromonas spp. and Pseudomonas spp. were widespread in Iskenderun Bay in 2007 and 2008. The increasing presence of antibiotic and heavy metal resistant Aeromonas spp. and Pseudomonas spp. may become a potential human health hazard.  相似文献   

3.
A total of 144 isolates of Pseudomonas spp. (48 each from the Yamuna River water, wastewater irrigated soil and groundwater irrigated soil) were tested for their resistance against certain heavy metals and antibiotics. Minimum inhibitory concentrations (MICs) of Hg2?+?, Cd2?+?, Cu2?+?, Zn2?+?, Ni2?+?, Pb2?+?, Cr3?+? and Cr6?+? for each isolate were also determined. A maximum MIC of 200 ??g/ml for mercury and 3,200 ??g/ml for other metals were observed. The incidences of metal resistance and MICs of metals for Pseudomonas isolates from the Yamuna water and wastewater irrigated soil were significantly different to those of groundwater irrigated soil. A high level of resistance against tetracycline and polymyxin B (81.2%) was observed in river water isolates. However, 87.5% of Pseudomonas isolates from soil irrigated with wastewater showed resistance to sulphadiazine, whereas 79.1% were resistant to both ampicillin and erythromycin. Isolates from soil irrigated with groundwater exhibited less resistance towards heavy metals and antibiotics as compared to those of river water and wastewater irrigated soil. Majority of the Pseudomonas isolates from water and soil exhibited resistance to multiple metals and antibiotics. Resistance was transferable to recipient Escherichia coli AB2200 strains by conjugation. Plasmids were cured with the curing agent ethidium bromide and acridine orange at sub-MIC concentration.  相似文献   

4.
The objective of this study was to evaluate the impact of urbanization and seasonal changes on the prevalence of antibiotic-resistant bacteria in different aqueous environments. To this end, bacteria were isolated from three different water sources: the River Hooghly in Kolkata, River Kangsabati and groundwater from Kharagpur, West Bengal over three seasons: post-monsoon, winter and summer in 2012–2013. A total of 163 Gram-negative bacteria were isolated from the River Hooghly (n?=?138), River Kangsabati (n?=?13) and groundwater (n?=?12). Antibiotic susceptibility testing was done using 12 antibiotic discs. The percentages of multiple antibiotic-resistant (MAR) bacteria at the three sampling locations were found to be 71.01 % (98/138) for River Hooghly, 15.38 % (2/13) for River Kangsabati and 8.33 % (1/12) for groundwater. Prevalence of MAR bacteria with respect to the three seasons were the following: 73.58 % in post-monsoon, 59.26 % in winter and 53.57 % in summer. Antibiotic resistance index (ARI) was calculated for each location and each season. In general, ARI values for all the River Hooghly samples were >0.2 while those for the River Kangsabati and groundwater in Kharagpur were always <0.2 indicating greater exposure to antibiotics and subsequent resistance in bacteria from the River Hooghly compared to the other two locations. In addition, percentage of MAR and ARI values followed the trend: post-monsoon?>?winter?>?summer. This may be due to the additional terrestrial resistants that get swept along with surface runoff during the monsoons.  相似文献   

5.
Acid volatile sulfide (AVS) has been regarded as an important factor controlling metal bioavailability in anoxic sediments, but its effect on metal accumulation under natural conditions is poorly understood. Here, a field study of the influence of AVS on metal accumulation by Limnodrilus sp. in a heavily polluted river is provided. Most of the study area was subject to anaerobic and strongly reducing conditions, and the concentration of trace metals in surface sediments was high, as were the concentration of AVS and simultaneously extracted metals (SEM; average AVS?=?20.3 μmol g?1, average ∑SEM5?=?9.42 μmol g?1; ∑SEM5 refers to the sum of SEMCd, SEMCu, SEMPb, SEMNi, and SEMZn). Only a few species and small quantities of benthic invertebrates were found, and Limnodrilus sp. was dominant. There was no correlation between trace metal accumulation and (SEM-AVS), and in stations where (SEM-AVS) <0, the absolute value of bioaccumulation was high (average ∑BIO5?=?4.07 μmol g?1; ∑BIO5 refers to the sum of BIOCd, BIOCu, BIOPb, BIONi, and BIOZn), indicating that there was no relationship between (SEM–AVS) and metal accumulation in Limnodrilus sp. This was likely because Limnodrilus sp. ingest sediment particles as their main food source, so pore water metals play a minor role in their bioaccumulation (BIO) of materials. However, ∑BIO5 was significantly correlated with ∑SEM5 (r?=?0.795, p?<?0.01), revealing that the large number of sulfide-bound metals (SEM) in sediments may play an important role in metal accumulation in Limnodrilus sp., which can assimilate sulfide-associated metals by the help of the digestive fluids in the digestive systems.  相似文献   

6.
The present investigation aims to assess the phytoremediation potential of six aquatic macrophytes, viz. Eichhornia crassipes, Hydrilla verticillata, Jussiaea repens, Lemna minor, Pistia stratiotes and Trapa natans grown in paper mill effluent of JK Paper mill of Rayagada, Orissa, for remediation of heavy metals. The experiment was designed in pot culture experiments. Assessment of physico-chemical parameters of paper mill effluent showed significant decrease in pH, conductivity, total dissolved solids, total suspended solids, chlorine, sulphur, biological and chemical oxygen demand after growth of macrophytes for 20 days. Phytoremediation ability of these aquatic macrophytic species for copper (Cu) and mercury (Hg) was indicated by assessing the decrease in the levels of heavy metals from effluent water. Maximum reduction (66.5 %) in Hg content of untreated paper mill effluent was observed using L. minor followed by T. natans (64.8 %). L. minor showed highest reduction (71.4 %) of Cu content from effluent water followed by E. crassipes (63.6 %). Phytoextraction potential of L. minor was remarkable for Hg and Cu, and bioaccumulation was evident from bioconcentration factor values, i.e. 0.59 and 0.70, respectively. The present phytoremediation approach was considered more effective than conventional chemical treatment method for removing toxic contaminants from paper mill effluent.  相似文献   

7.
We report the first study on the occurrence of high-level aminoglycoside-resistant (HLAR) Enterococci in coastal bathing waters and beach sand in Malaysia. None of the encountered isolates were resistant to high levels of gentamicin (500 μg/mL). However, high-level resistance to kanamycin (2,000 μg/mL) was observed in 14.2 % of tested isolates, the highest proportions observed being among beach sand isolates. High-level resistance to kanamycin was higher among Enterococcus faecalis and Enterococcus faecium than Enterococcus spp. Chi-square analysis showed no significant association between responses to tested antibiotics and the species allocation or source of isolation of all tested Enterococci. The species classification of encountered Enterococci resistance to vancomycin was highest among Enterococcus spp. (5.89 %) followed by E. faecium (4.785) and least among E. faecalis. A total of 160 isolates were also tested for virulence characteristics. On the whole, caseinase production was profoundly highest (15.01 %) while the least prevalent virulence characteristic observed among tested beach Enterococci was haemolysis of rabbit blood (3.65 %). A strong association was observed between the source of isolation and responses for each of caseinase (C?=?0.47, V?=?0.53) and slime (C?=?0.50, V?=?0.58) assays. Analysis of obtained spearman’s coefficient showed a strong correlation between caseinase and each of the slime production (p?=?0.04), gelatinase (p?=?0.0035) and haemolytic activity on horse blood (p?=?0.004), respectively. Suggestively, these are the main virulent characteristics of the studied beach Enterococci. Our findings suggest that recreational beaches may contribute to the dissemination of Enterococci with HLAR and virulence characteristics.  相似文献   

8.
We report the first study on the occurrence of antibiotic-resistant enterococci in coastal bathing waters in Malaysia. One hundred and sixty-five enterococci isolates recovered from two popular recreational beaches in Malaysia were speciated and screened for antibiotic resistance to a total of eight antibiotics. Prevalence of Enterococcus faecalis and Enterococcus faecium was highest in both beaches. E. faecalis/E. faecium ratio was 0.384:1 and 0.375:1, respectively, for isolates from Port Dickson (PD) and Bagan Lalang (BL). Analysis of Fisher’s exact test showed that association of prevalence of E. faecalis and E. faecium with considered locations was not statistically significant (p?<?0.05). Chi-square test revealed significant differences (χ 2?=?82.630, df?=?20, p?<?0.001) in the frequency of occurrence of enterococci isolates from the considered sites. Resistance was highest to nalidixic acid (94.84 %) and least for chloramphenicol (8.38 %). One-way ANOVA using Tukey–Kramer multiple comparison test showed that resistance to ampicillin was higher in PD beach isolates than BL isolates and the difference was extremely statistically significant (p?<?0.0001). Frequency of occurrence of multiple antibiotic resistance (MAR) isolates were higher for PD beach water (64.29 %) as compared to BL beach water (13.51 %), while MAR indices ranged between 0.198 and 0.48. The results suggest that samples from Port Dickson may contain MAR bacteria and that this could be due to high-risk faecal contamination from sewage discharge pipes that drain into the sea water.  相似文献   

9.
A hundred Enterococcus strains were isolated from seawater samples collected from coastal areas of Istanbul. Isolates were identified to the species level using standard biochemical tests specified by Facklam and Collins. The species distribution was as follows Enterococcus faecalis (96%), Enterococcus gallinarum (3%) and Enterococcus solitarius (1%). The resistance of bacteria to both heavy metals (zinc [Zn], iron [Fe], cadmium [Cd], chrome [Cr], cobalt [Co]) and antibiotics (ampicillin 10 μg [AP], penicillin G 10 Units [PG], gentamycin 10 μg [GM], streptomycin 10 μg [S], chloramphenicol 10 μg [C], erythromycin 15 μg [E], kanamycin 30 μg [K], amikacin 30 μg [AK], nalidixic acid 30 μg [NA], and vancomycin 30 μg [VA]) was evaluated. None of the strains was resistant to VA. It was found that among the 100 isolates, those that exhibit resistance to antibiotics, particularly NA, S and K, were also resistant all the heavy metals tested. To our knowledge this is the first report focusing on determination of resistance of environmental enterococci found in Istanbul against heavy metals and antibiotics. Thus, combined expressions of antibiotic and heavy metal resistance may help to reinforce ecological and epidemiological studies and to determine the role of these strains in antibiotic and heavy metal resistance dissemination.  相似文献   

10.
An exploratory study of the area surrounding a historical Pb?CZn mining and smelting area in Zawar, India, detected significant contamination of the terrestrial environment by heavy metals. Soils (n?=?87) were analyzed for pH, EC, total organic matter (TOM), Pb, Zn, Mn, and Cd levels. The statistical analysis indicated that the frequency distribution of the analyzed parameters for these soils was not normal. The median concentrations of metals in surface soils were: Pb 420.21 ?? g/g, Zn 870.25 ?? g/g, Mn 696.70 ?? g/g, and Cd 2.09 ?? g/g. Zn concentrations were significantly correlated with Cd (r?=?0.867), indicating that levels of Cd are dependent on Zn. However, pH, electrical conductivity and total organic matter were not correlated significantly with Cd, Pb, Zn, and Mn. To assess the potential mobility of Cd, Pb, and Zn in soils, single (EDTA) as well as sequential extraction scheme (modified BCR) were applied to representative (n?=?23) soil samples. The amount of Cd, Pb, and Zn extracted by EDTA and their total concentrations showed linear positive correlation, which are statistically significant (r values for Cd, Pb, and Zn being 0.901, 0.971, and 0.795, respectively, and P values being <0.001). The correlation coefficients indicate a strong relation between EDTA-extractable metal and total metal. These results appear to justify the use of ??total?? metal contents as a useful preliminary indicator of areas where the risks of metal excess or deficiency are high. The EDTA extractability was maximum for Cd followed by Pb and Zn in soils from all the locations. As indicated by single extraction, the apparent mobility and potential bioavailability of metals in soils followed the order: Cd ?? Pb >?> Zn. Soil samples were sequentially extracted (modified BCR) so that solid pools of Cd, Zn, and Pb could be partitioned into four operationally defined fractions viz. acid-soluble, reducible, oxidizable, and residual. Cadmium was present appreciably (39.41%) in the acid-soluble fraction and zinc was predominantly associated (32.42%) with residual fraction. Pb (66.86%) and Zn (30.44%) were present mainly in the reducible fraction. Assuming that the mobility and bioavailability are related to solubility of geochemical forms of metals and decrease in the order of extraction, the apparent mobility and potential metal bioavailability for these contaminated soil samples is Cd > Zn > Pb.  相似文献   

11.
We analyzed national data on blood lead levels (BLL) and blood cadmium levels (BCL) in residents living near 38 abandoned metal mining areas (n?=?5,682, 18–96 years old) in Korea that were collected by the first Health Effect Surveillance for Residents in Abandoned Metal mines (HESRAM) from 2008 to 2011. The geometric mean BCL and BLL were 1.60 μg/L (95 % CI?=?1.57–1.62 μg/L) and 2.87 μg/dL (95 % CI?=?2.84–2.90 μg/dL), respectively, notably higher than levels in the general population in Korea and other countries. We found significantly higher BLL and BCL levels in people living within 2 km of an abandoned metal mine (n?=?3,165, BCL?=?1.87 μg/L, BLL?=?2.91 μg/dL) compared to people living more than 2 km away (n?=?2,517, BCL?=?1.31 μg/L, BLL?=?2.82 μg/dL; P?<?0.0001) and to the general population values reported in the literature.  相似文献   

12.
The present study was conducted to determine the heavy metal contamination in soil with accumulation in edible parts of plants and their subsequent changes in biochemical constituents due to wastewater irrigation. Though the wastewater contains low levels of the heavy metals (Fe, Mn, Pb, Cd, and Cr), the soil and plant samples show higher values due to accumulation. The trend of metal accumulation in wastewater-irrigated soil is in the order: Fe > Pb > Mn > Cr > Cd. Of the three species Colocasia esculentum, Brassica nigra, and Raphanus sativus that are grown, the order of total heavy metal accumulation in roots is Raphanus sativus > Colocasia esculentum, while in shoots the order is Brassica nigra > Colocasia esculentumRaphanus sativus. The enrichment factor (EF) of the heavy metals in contaminated soil is in the sequence of Cd (3) > Mn (2.7) > Cr (1.62) > Pb (1.46) > Fe (1.44), while in plants EF varies depending upon the species and plant part. C. esculentum and R. sativus show a higher EF for Cr and Cd. All plants show a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant whereas the TF values for Pb are very low as it is not bioavailable. Results of the biochemical parameters show decrease in total chlorophyll and total amino acid levels in plants and an increase in amounts of soluble sugars, total protein, ascorbic acid, and phenol except B. nigra for protein in plants grown in soil irrigated with wastewater as compared to control site.  相似文献   

13.
Cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) were analyzed in the breast feather of white-fronted geese (Anser albifrons, n?=?15), mallards (Anas platyrhynchos, n?=?4), and spot-billed ducks (Anas poecilorhyncha, n?=?13) found dead in Gimpo, Korea. All of the mallards and eight of the 13 spot-billed ducks had embedded shot. Concentrations of Pb, Cr, Cu, Mn, Zn, and Fe were significantly different among waterfowl species. Mallards with embedded shot had relatively higher Pb, Cr, Mn, and Fe concentrations than the other species. Cd and Cr in feathers of waterfowl species were within the range reported for other birds, and no specimen exceeded the tentative threshold effect levels of Cd (2 μg/g dry weight (dw)) and Cr (2.8 μg/g dw) for birds. However, Pb in feathers of all four mallards and two spot-billed ducks exceeded the threshold for deleterious effects (>4 μg/g dw). Essential elements such as Cu, Mn, Zn, and Fe in the feather of waterfowl species were not at toxic levels and within the background or normal range for the homeostatic mechanisms.  相似文献   

14.
The present study was performed under natural environment to assess levels of different heavy metals in soil and Abelmoschus esculentus plants along with soil microbial population irrigated with five rates of distillery effluent (DE) viz. 10, 25, 50, 75 and 100 % concentration in comparison with control (Bore well water). Results revealed that among various concentrations of DE, irrigation with 100 % DE significantly (P < 0.001) increased Zn (+63.46 %), Cu (+292.37 %), Zn (+3763.63 %), Cd (+264.29 %), Ni (+48.39 %) and Cr (+815.74 %), while decreased total bacteria (?45.23 %), fungi (?17.77 %) and actinomycetes (?42.57 %) in the soil. Enrichment factor of various heavy metals for soil was in the order Ni > Cr > Cd > Zn > Cu, and for A. esculentus plants, it was in the order Ni > Cr > Cu > Cd > Zn after irrigation with distillery effluent. The enrichment factor value was found maximum for Ni in comparison to other metals at 100 % DE concentration as compared with BWW. However, the values of these metals were below the recommended permissible limit.  相似文献   

15.
The Fusaro Lagoon is a shallow lagoon, located in SW Italy, largely influenced in the last decades by several anthropic impacts. The study examined the pollution status of the lagoon, during year 2011–2012 at nine sampling stations with the aim to find out proper measurements of water lagoon restoration. Concentrations of heavy metals (HMs) (aluminium [Al], barium [Ba], cadmium [Cd], copper [Cu], iron [Fe], manganese [Mn], vanadium [V] and zinc [Zn]) were examined in water, sediments and specimens of the ascidian Ciona intestinalis sp. A. Low levels of dissolved oxygen concentration were detected at many stations, with mean values of 5.2–6.4 mg L?1. The redox potential of surface waters was also low, ?2.7 to 50.7 mV. Sediments possessed high organic matter content, 17.7–29.4 %. In sediments, the mean Zn level, 251.4 mg kg?1, was about sixfold higher than that recorded in year 2000 (38.5 mg kg?1) and considerably higher than that recorded in 2007 (191 mg kg?1). The mean levels of Cd were outstandingly high, with a mean value of 70.5 mg kg?1, about 30- and 50-fold higher than those determined in 2000 and 2007, respectively. Cadmium (Cd), Cu and nickel (Ni) appeared in excess with respect to most current guidelines, reaching significant pollution levels. C. intestinalis sp. A was detected only at few stations, with metals accumulated preferentially in the body in respect to the tunic, from 1.2 times for Zn (178 mg kg?1) to 4.0 times for V (304 mg kg?1). Data suggests the necessity of an immediate action of eco-compatible interventions for environmental restoration.  相似文献   

16.
Oxidative stress (OS) and fluctuating asymmetry (FA) as risk markers for environmental stress are widely used to predict changes in the health and fitness of many animals exposed to pollutants. However, from the perspective of protecting declining amphibians, it remains to be verified which one would be a reliable indicator for amphibians exposed to long-term heavy metal pollution under natural conditions. In this study, the OS and FA of Bufo raddei exposed to natural heavy metal pollution were analyzed to determine which marker is more accurate for indicating heavy metal-induced stress. Three years of data were collected during the breeding season of B. raddei from Baiyin (BY), which has been mainly contaminated with Cu, Zn, Pb, and Cd compounds for a long period, and from Liujiaxia (LJX), which is a relatively unpolluted area. Unexpectedly, although significant accumulation of the four heavy metals was found in the kidney and liver of B. raddei from BY, the levels of superoxide dismutase, glutathione peroxidase, and malondialdehyde in these two organs were found to be irregular, with low repeatability in both BY and LJX. However, significant differences in the levels of FA were observed in B. raddei populations from these two areas over the past 3 years (P < 0.01). The degrees of FA in B. raddei populations from BY and LJX were assessed as degree 4 and 1, respectively. In short, this study suggested that FA was a more reliable and effective indicator than OS to monitor and predict long-term environmental stress on anuran amphibians.  相似文献   

17.
The accumulation of heavy metals in agricultural soils has been the subject of great concern because these metals have the potential to be transferred to soil solutions and subsequently accumulate in the food chain. To study the persistence of trace metals in crop and orchard soils, representative surface soil samples were collected from terrace farmland that had been cultivated for various numbers of years (3, 8, 12, 15, and >20 years), terrace orchard land that had been cultivated for various numbers of years (4, 7, 10, 12, 15, 18, 25, and >30 years), and slope farmland with various gradients (3°, 5°, 8°, 12°, 15°, and 25°) and analyzed for heavy metals (As, Cr, Cu, Hg, Ni, and Zn). These samples were collected from Nihegou catchment of Chunhua county in the southern Loess Plateau of China. The six heavy metals demonstrated different trends with time or gradient in the three land-use types. The Cu and Zn contents of the soil were higher than the referee background values of the loessal soil, and the contents of Cr and Ni, and especially those of As and Hg, were lower. Cu was the only heavy metal that just met the Grade III Environmental Quality Standard for Soils of China, while the others reached grade I. Cu and Hg were considered contaminant factors and Hg was a moderate potential ecological risk factor in the catchment. Of the sites investigated, 89.5% fell into the category with a low degree of contamination (C d ) and rest were moderate, while all three land-use types had low potential ecological risk (RI). Changes of C d and RI were consistent with the cultivated time in the terrace farmland and terrace orchard land. Values of RI increased while C d decreased with the increasing of slope gradient in the slope farmland. Evaluating the ecological risk posed by heavy metals using more soil samples in a larger study area is necessary on the Loess Plateau of China.  相似文献   

18.
Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L?1; Cu was 392 μg L?1 at the extreme downstream, Allahabad and Ni was 146 μg L?1 at midstream, Agra. Largest concentration of Cu was 617 μg kg?1, Ni 1,621 μg kg?1 at midstream while Pb was 1,214 μg kg?1 at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg?1 in Oreochromis niloticus and 1.55 μg kg?1 in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg?1 in O. niloticus and 124 μg kg?1 in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02?×?10?4 which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.  相似文献   

19.
This study assessed the heavy metal (Cr, Mn, Ni, Cu, Zn, and Pb) uptake and its effect on biochemical parameters in Paspalum distichum, a wetland plant. Sludge collected from Bhalswa waste dump, New Delhi, was used as heavy metal source and dosed in different proportions viz. 20%, 40%, 60%, and 80% to the garden soil. The plants accumulated metals mostly in belowground organs. The metal accumulation followed the order: Cr>Mn>Cu>Zn>Ni>Pb. The range of heavy metal concentration in tissue of belowground organs after 180 days of growth was 1,778.65–4,288.01 ppm Cr, 828.11–1,360 ppm Mn, 236.52–330.07 ppm Ni, 155.79–282.35 ppm Cu, 27.05–91.16 ppm Zn, and 27.09–50.87 ppm Pb. The biochemical parameters viz. chlorophyll and protein contents and peroxidase (POD) activity exhibited no considerable adverse effect indicating the plants’ tolerance towards heavy metals. The high POD activity and synthesis of new protein bands at high sludge-dosed plants were also in support of this fact.  相似文献   

20.
Contamination of surface waters has a direct impact on the public health of entire communities. Microorganisms inhabiting contaminated surface waters have developed mechanisms of coping with a variety of toxic metals and drugs. Investigations were carried out to isolate and identify lead-resistant bacteria from the river K?z?l?rmak along the city of K?r?kkale, Turkey. Of the 33 lead-resistant isolates, one isolate with a minimal inhibitory concentration of 1,200 mg?L?1 was isolated and identified as Enterococcus faecalis by using biochemical tests and 16S rRNA sequencing. Lead-resistant E. faecalis isolate was found out to be resistant to other heavy metals like aluminum, lithium, barium, chromium, iron, silver, tin, nickel, zinc, and strontium and to drugs like amikacin, aztreonam, and gentamicin. E. faecalis harbored four plasmids with the molecular sizes of 1.58, 3.06, 22.76, and 28.95 kb. Plasmid profile analyses of cured derivatives revealed that the lead resistance ability of E. faecalis was still existing despite the elimination of all the plasmids. Moreover, the antibiotic resistance pattern of the cured derivatives did not demonstrate any change from the parental strain. Our findings indicated that the lead resistance genes of E. faecalis were located on the chromosomal DNA rather than the plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号