首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
Compliance under the Regional Haze Rule of 1999 is based on Interagency Monitoring of Protected Visual Environments (IMPROVE) protocols for reconstructing aerosol mass and light extinction from aerosol chemical concentrations measured in the IMPROVE network. The accuracy, consistency, and potential biases in these formulations were examined using IMPROVE aerosol chemistry and light extinction data from 1988-1999. Underestimation of particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) by the IMPROVE mass reconstruction formula by 12%, on average, appears to be related to the exclusion of sodium, chlorine, and other elements and to artifacts associated with the measurement of organic carbon, but not to absorption of water by sulfates and nitrates on IMPROVE Teflon filters during weighing. Light scattering measured by transmissometry is not consistent with nephelometer scattering or single-scatter albedos expected for remote locations. Light scattering was systematically overestimated by 34%, on average, with the IMPROVE particle scattering (Bsp) reconstruction formula. The use of climatologically based hygroscopic growth factors f(RH) suggested for compliance with the Haze Rule contributes significantly to this overestimation and increases the amount of light extinction attributable to sulfates for IMPROVE samples between 1993 and 1999 by 5 percentage points.  相似文献   

2.
The Interagency Monitoring of Protected Visual Environments (IMPROVE) protocols for reconstructing the ambient light extinction coefficient (bext) from measured aerosol species are the basis for evaluating compliance under the Regional Haze Rule. Aerosol mass composition and optical properties have been measured as part of the IMPROVE program since 1988, providing a long-term data set of aerosol properties at 38 sites around the US. This data set is used to evaluate assumptions made in calculating reconstructed mass and bext by applying statistical analysis techniques. In particular, the molecular weight to carbon weight ratio used to compute particulate organic matter is investigated. An annual average value of 1.7±0.2 for the IMPROVE sites, compared to the value of 1.4 currently assumed in the IMPROVE algorithm, is derived. Regression analysis also indicates that fine soil mass concentrations are underestimated by roughly 20% on average. Finally, aerosol mass scattering and extinction efficiencies assumed in the IMPROVE reconstructed bext protocol are examined. Fine mode (Dp<2.5 μm) mass scattering efficiencies have a functional dependence on mass concentrations at many sites, and use of a mass-concentration-dependent adjustment factor to refine the assumed efficiencies provides for closer agreement between measured and reconstructed bext.  相似文献   

3.
The U.S. Environmental Protection Agency (EPA) published the Regional Haze Rule (RHR) in 1999. The RHR default goal is to reduce haze linearly from the baseline period of 2000 through 2004 to natural background in 2064. EPA-recommended method for estimating baseline and natural haze uses the Interagency Monitoring of Protected Visual Environments (IMPROVE) light extinction formula. The IMPROVE formula predicts light extinction from measured aerosol chemical concentrations and estimates of the relative humidity multiplier. On average, the IMPROVE formula overpredicts 6156 nephelometer days (24-hr average measured particle light scattering, bsp) of data by 25%. A new IMPROVED method that reconstructs light extinction using a concentration power law model overpredicts these nephelometer days of data by just 2%. Ignoring the 20% lowest light scattering days, this new IMPROVED formula has a 3% underprediction bias over the 4925 highest nephelometer days with light scattering > or =8 inverse megameters. For comparison, the IMPROVE formula has a 12% overprediction bias for the same days. The IMPROVE formula overprediction averages 77%, 27%, 17%, 9%, and -5% broken down by quintile from lowest to highest nephelometer measured light scattering days. The new IMPROVED formula average overprediction is 21%, -5%, -5%, -2%, and 0%. So, agreement between measured and predicted light scattering improves by modifying the current IMPROVE light extinction formula.  相似文献   

4.
The [revised] IMPROVE Equation for estimating light extinction from aerosol chemical composition was evaluated considering new measurements at U.S. national parks. Compared with light scattering (Bsp) measured at seven IMPROVE sites with nephelometer data from 2003–2012, the [revised] IMPROVE Equation over- and underestimated Bsp in the lower and upper quintiles, respectively, of measured Bsp. Underestimation of the worst visibility cases (upper quintile) was reduced by assuming an organic mass (OM)/organic carbon (OC) ratio of 2.1 and hygroscopic growth of OM, based on results from previous field studies. This assumption, however, tended to overestimate low Bsp even more. Assuming that sulfate was present as ammonium bisulfate rather than as ammonium sulfate uniformly reduced estimated Bsp. The split-mode model of concentration- and size-dependent dry mass scattering efficiencies in the [revised] IMPROVE Equation does not eliminate systematic biases in estimated Bsp. While the new measurements of OM/OC and OM hygroscopicity should be incorporated into future iterations of the IMPROVE Equation, the problem is not well constrained due to a lack of routine measurements of sulfate neutralization and the water-soluble fraction of OM in the IMPROVE network.

Implications: Studies in U.S. national parks showed that aerosol organics contain more mass and absorb more water as a function of relative humidity than is currently assumed by the IMPROVE Equation for calculating chemical light extinction. Consideration of these results could significantly shift the apportionment of light extinction to water-soluble organic aerosols and therefore better inform pollution control strategies under the U.S. Environmental Protection Agency Regional Haze Rule.  相似文献   


5.
Systematic measurement of fine particulate matter (aerodynamic diameter less than 2.5 microm [PM2.5]) mass concentrations began nationally with implementation of the Federal Reference Method (FRM) network in 1998 and 1999. In California, additional monitoring of fine particulate matter (PM) occurred via a dichotomous sampler network and several special studies carried out between 1982 and 2002. The authors evaluate the comparability of FRM and non-FRM measurements of PM2.5 mass concentrations and establish conversion factors to standardize fine mass measurements from different methods to FRM-equivalent concentrations. The authors also identify measurements of PM2.5 mass concentrations that do not agree with FRM or other independent PM2.5 mass measurements. The authors show that PM2.5 mass can be reconstructed to a high degree of accuracy (r2 > 0.9; mean absolute error approximately 2 microg m(-3)) from PM with an aerodynamic diameter < or =10 microm (PM10) mass and species concentrations when site-specific and season-specific conversion factors are used and a statewide record of fine PM mass concentrations by combining the FRM PM2.5 measurements, non-FRM PM2.5 measurements, and reconstructions of PM2.5 mass concentrations. Trends and spatial variations are evaluated using the integrated data. The rates of change of annual fine PM mass were negative (downward trends) at all 22 urban and 6 nonurban (Interagency Monitoring of Protected Visual Environments [IMPROVE]) monitoring locations having at least 15 yr of data during the period 1980-2007. The trends at the IMPROVE sites ranged from -0.05 to -0.25 microg m(-3) yr(-1) (median -0.11 microg m(-3) yr(-1)), whereas urban-site trends ranged from -0.13 to -1.29 microg m(-3) yr(-1) (median -0.59 microg m(-3) yr(-1)). The urban concentrations declined by a factor of 2 over the period of record, and these decreases were qualitatively consistent with changes in emissions of primary PM2.5 and gas-phase precursors of secondary PM. Mean PM2.5 mass concentrations ranged from 3.3 to 7.4 microg m(-3) at IMPROVE sites and from 9.3 to 37.1 microg m(-3) at urban sites.  相似文献   

6.
Canada has recently established standards for the management of particulate matter (PM) air quality. National networks currently measure PM mass concentrations and chemical speciation. Methods used in the U.S. IMPROVE network are applied to the 1994--2000 Canadian fine PM data to obtain a regional reconstruction of the visibility based on particle composition. Nationally, the greatest light extinction occurs in the Windsor-Quebec City corridor. Variations in the dominant chemical species responsible for the reduction in visibility are presented for regions across the country. In most regions, sulfate and nitrate contribute most greatly to reduced visibility. The visibility implications of achieving the Canada-Wide Standard (CWS) across the country are evaluated, with the greatest improvement in visibility associated with achieving the CWS in southern Ontario. Elsewhere in the country, achieving the CWS will actually result in deteriorating air quality. Improving current estimates of visibility requires higher spatially and temporally resolved measurements of organic and elemental carbon fractions and particulate nitrate.  相似文献   

7.
The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low.  相似文献   

8.
The U.S. Environmental Protection Agency (EPA) published the Regional Haze Rule (RHR) in 1999. The RHR default goal is to reduce haze linearly to natural background in 2064 from the baseline period of 2000-2004. The EPA default method for estimating natural and baseline visibility uses the Interagency Monitoring of Protected Visual Environments (IMPROVE) formula. The IMPROVE formula predicts the light extinction coefficient from aerosol chemical concentrations measured by the IMPROVE network. The IMPROVE light scattering coefficient formula using data from 1994-2002 underestimated the measured light scattering coefficient by 700 Mm(-1), on average, on days with precipitation. Also, precipitation occurred as often on the clearest as haziest days. This led to estimating the light extinction coefficient of precipitation, averaged over all days, as the light scattering coefficient on days with precipitation (700 Mm(-1)) multiplied by the percent of precipitation days in a year. This estimate added to the IMPROVE formula light extinction estimate gives a real world estimate of visibility for the 20% clearest, 20% haziest, and all days. For example, in 1993, the EPAs Report to Congress projected visibility in Class I areas would improve by 3 deciviews by 2010 across the haziest portions of the eastern United States because of the 1990 Clean Air Act Amendments. Omitted was the light extinction coefficient of precipitation. Adding in the estimated light extinction coefficient of precipitation, the estimated visibility improvement declines to <1 deciview.  相似文献   

9.
Trends in fine particulate matter <2.5 microm in diameter (PM2.5) and visibility in the Southeastern United States were evaluated for sites in the Interagency Monitoring of Protected Visual Environments, Speciated Trends Network, and Southeastern Aerosol Research and Characterization Study networks. These analyses are part of the technical assessment by Visibility Improvement-State and Tribal Association of the Southeast (VISTAS), the regional planning organization for the southeastern states, in support of State Implementation Plans for the regional haze rule. At all of the VISTAS IMPROVE sites, ammonium sulfate and organic carbon (OC) are the largest and second largest contributors, respectively, to light extinction on both the 20% haziest and 20% clearest days. Ammonium nitrate, elemental carbon (EC), soils, and coarse particles make comparatively small contributions to PM2.5 mass and light extinction on most days at the Class I areas. At Southern Appalachian sites, the 20% haziest days occur primarily in the late spring to fall, whereas at coastal sites, the 20% haziest days can occur through out the year. Levels of ammonium sulfate in Class I areas are similar to those in nearby urban areas and are generally higher at the interior sites than the coastal sites. Concentrations of OC, ammonium nitrate, and, sometimes, EC, tend to be higher in the urban areas than in nearby Class I areas, although differences in measurement methods complicate comparisons between networks. Results support regional controls of sulfur dioxide for both regional haze and PM2.5 implementation and suggest that controls of local sources of OC, EC, or nitrogen oxides might also be considered for urban areas that are not attaining the annual National Ambient Air Quality Standard for PM2.5.  相似文献   

10.
In order to investigate the nature and sources of regional haze, the General Motors mobile Atmospheric Research Laboratory was used in the summer of 1980 to monitor ambient air quality in the Shenandoah Valley of northern Virginia. On the average, 92% of the total light extinction was due to scattering by particles; the remainder was due to scattering by gases and absorption by gases and particles. Sulfate aerosols were the most Important visibility-reducing species. Averaging 55% of the fine participate mass, sulfates (and associated water) accounted for 78% of the total light extinction. The second most abundant fine particulate, accounting for 29% of the fine mass, was carbon—most of which was organic. Most of the remaining particulate mass and extinction were due to crustal materials. It is estimated that 78–86% of the total light extinction was caused by anthropogenic aerosol, most of which originated in major source areas of the midwest.  相似文献   

11.
The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

12.
Abstract

The U.S. Environmental Protection Agency (EPA) published the Regional Haze Rule (RHR) in 1999.1 The RHR default goal is to reduce haze linearly to natural background in 2064 from the baseline period of 2000–2004. The EPA default method2,3 for estimating natural and baseline visibility uses the Interagency Monitoring of Protected Visual Environments (IMPROVE) formula. The IMPROVE formula predicts the light extinction coefficient from aerosol chemical concentrations measured by the IMPROVE network. The IMPROVE light scattering coefficient formula using data from 1994–2002 underestimated the measured light scattering coefficient by 700 Mm?1, on average, on days with precipitation. Also, precipitation occurred as often on the clearest as haziest days. This led to estimating the light extinction coefficient of precipitation, averaged over all days, as the light scattering coefficient on days with precipitation (700 Mm?1) multiplied by the percent of precipitation days in a year. This estimate added to the IMPROVE formula light extinction estimate gives a real world estimate of visibility for the 20% clearest, 20% haziest, and all days. For example, in 1993, the EPAs Report to Congress projected visibility in Class I areas would improve by 3 deciviews by 2010 across the haziest portions of the eastern United States because of the 1990 Clean Air Act Amendments. Omitted was the light extinction coefficient of precipitation. Adding in the estimated light extinction coefficient of precipitation, the estimated visibility improvement declines to <1 deci-view.  相似文献   

13.
Abstract

The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was ±0.6 μg/m3 organic material, ±0.3 μg/m3 ammonium sulfate, and ±0.07 μg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

14.
The Handix Scientific open-path cavity ringdown spectrometer (OPCRDS) was deployed during summer 2016 in Great Smoky Mountains National Park (GRSM). Extinction coefficients from the relatively new OPCRDS and from a more well-established extinction instrument agreed to within 7%. Aerosol hygroscopic growth (f(RH)) was calculated from the ratio of ambient extinction measured by the OPCRDS to dry extinction measured by a closed-path extinction monitor (Aerodyne’s cavity-attenuated phase shift particulate matter extinction monitor [CAPS PMex]). Derived hygroscopicity (relative humidity [RH] < 95%) from this campaign agreed with data from 1995 at the same site and time of year, which is noteworthy given the decreasing trend for organics and sulfate in the eastern United States. However, maximum f(RH) values in 1995 were less than half as large as those recorded in 2016—possibly due to nephelometer truncation losses in 1995. Two hygroscopicity parameterizations were investigated using high-time-resolution OPCRDS+CAPS PMex data, and the κext model was more accurate than the gamma model. Data from the two ambient optical instruments, the OPCRDS and the open-path nephelometer, generally agreed; however, significant discrepancies between ambient scattering and extinction were observed, apparently driven by a combination of hygroscopic growth effects, which tend to increase nephelometer truncation losses and decrease sensitivity to the wavelength difference between the two instruments as a function of particle size. There was not a statistically significant difference in the mean reconstructed extinction values obtained from the original and the revised IMPROVE (Interagency Monitoring of Protected Visual Environments) equations. On average, IMPROVE reconstructed extinction was ~25% lower than extinction measured by the OPCRDS, which suggests that the IMPROVE equations and 24-hr aerosol data are moderately successful in estimating current haze levels at GRSM. However, this conclusion is limited by the coarse temporal resolution and the low dynamic range of the IMPROVE reconstructed extinction.

Implications: Although light extinction, which is directly related to visibility, is not directly measured in U.S. National Parks, existing IMPROVE protocols can be used to accurately infer visibility for average humidity conditions, but during the large fraction of the year when humidity is above or below average, accuracy is reduced substantially. Furthermore, nephelometers, which are used to assess the accuracy of IMPROVE visibility estimates, may themselves be biased low when humidity is very high. Despite reductions in organic and sulfate particles since the 1990s, hygroscopicity, particles’ affinity for water, appears unchanged, although this conclusion is weakened by the previously mentioned nephelometer limitations.  相似文献   


15.
A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   

16.
The U.S. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility. This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer, along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 ± 0.3 m2/g at relative humidity below 80%. However, at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However, a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water. Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.

Implications: Visibility is currently based on 24-hr averaged PM mass and composition. A metric that captures diurnal changes would better represent human perception. Furthermore, if the PM measurement included aerosol bound water, this would negate the need to know particulate composition and relative humidity (RH), which is currently used to estimate visibility. Methods are outlined that could accomplish both of these objectives based on use of a PM monitor that includes aerosol-bound water. It is recommended that these techniques, coupled with appropriate measurements of light scattering and absorption by aerosols, be evaluated for potential use in the visibility based secondary standard.  相似文献   

17.
Abstract

A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   

18.
Observations of the mass and chemical composition of particles less than 2.5 microm in aerodynamic diameter (PM2.5), light extinction, and meteorology in the urban Baltimore-Washington corridor during July 1999 and July 2000 are presented and analyzed to study summertime haze formation in the mid-Atlantic region. The mass fraction of ammoniated sulfate (SO4(2-)) and carbonaceous material in PM2.5 were each approximately 50% for cleaner air (PM2.5< 10 microg/m3) but changed to approximately 60% and approximately 20%, respectively, for more polluted air (PM2.5>30 microg/m3). This signifies the role of SO4(2-) in haze formation. Comparisons of data from this study with the Interagency Monitoring of Protected Visual Environments network suggest that SO4(2-) is more regional than carbonaceous material and originates in part from upwind source regions. The light extinction coefficient is well correlated to PM2.5 mass plus water associated with inorganic salt, leading to a mass extinction efficiency of 7.6 +/- 1.7 m2/g for hydrated aerosol. The most serious haze episode occurring between July 15 and 19, 1999, was characterized by westerly transport and recirculation slowing removal of pollutants. At the peak of this episode, 1-hr PM2.5 concentration reached approximately 45 microg/m3, visual range dropped to approximately 5 km, and aerosol water likely contributed to approximately 40% of the light extinction coefficient.  相似文献   

19.
Measurements from sites of the Southeastern Aerosol Research and Characterization (SEARCH) program, made from 1998 to 2001, are used with a thermodynamic equilibrium model, Simulating Composition of Atmospheric Particles at Equilbrium (SCAPE2), to extend an earlier investigation of the responses of fine particulate nitrate (NO3-) and fine particulate matter (PM2.5) mass concentrations to changes in concentrations of nitric acid (HNO3) and sulfate (SO42-). The responses were determined for a projected range of variations of SO42- and HNO3 concentrations resulting from adopted and proposed regulatory initiatives. The predicted PM2.5 mass concentration decreases averaged 1.8-3.9 microg/m3 for SO42- decreases of 46-63% from current concentrations. Combining the S042- decrease with a 40% HNO3 decrease from current concentrations (approximating expected mobile-source oxides of nitrogen [NOx] reductions by 2020) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0.2 microg/m3 for three nonurban sites and 0.8-1 microg/m3 for one nonurban and two urban sites. Increasing the HNO3 reduction to 55% (an estimate of adding Clear Skies Phase II NOx reductions) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0-0.4 microg/m3. Because of the well-documented losses of particulate NO3- from Federal Reference Method (FRM) filters, only a fraction of these incremental changes would be observed.  相似文献   

20.
Emission factors for particulate matter (PM) are generally reported as mass emission factors (PM mass emitted per time or activity) as appropriate for air quality standards based on mass concentration. However, for visibility and radiative transfer applications, scattering, absorption, and extinction coefficients are the parameters of interest, with visibility standards based on extinction coefficients. These coefficients (dimension of inverse distance) equal cross-section concentrations, and, therefore, cross-section emission factors are appropriate. Scattering cross-section emission factors were determined for dust entrainment by nine vehicles, ranging from light passenger vehicles to heavy military vehicles, traveling on an unpaved road. Each vehicle made multiple passes at multiple speeds while scattering and absorption coefficients, wind velocity and dust plume profiles, and additional parameters were measured downwind of the road. Light absorption of the entrained PM was negligible, and the light extinction was primarily caused by scattering. The resulting scattering cross-section emission factors per vehicle kilometer traveled (vkt) range from 12.5 m2/vkt for a slow (16 km/ hr), light (1176 kg) vehicle to 3724 m2/vkt for a fast (64 km/hr), heavy (17,727 kg) vehicle and generally increase with vehicle speed and mass. The increase is approximately linear with speed, yielding emission factors per vkt and speed ranging from 4.2 m2/(vkt km/hr) to 53 m2/(vkt km/hr). These emission factors depend approximately linearly on vehicle mass within the groups of light (vehicle mass < or =3100 kg) and heavy (vehicle mass >8000 kg) vehicles yielding emission factors per vkt, speed, and mass of 0.0056 m2/(vkt km/hr kg) and 0.0024 m2/(vkt km/hr kg), respectively. Comparison of the scattering cross-section and PM mass emission factors yields average mass scattering efficiencies of 1.5 m2/g for the light vehicles and of 0.8 m2/g for the heavy vehicles indicating that the heavy vehicles entrain larger particles than the light vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号