首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
ABSTRACT: In most studies, quantile estimates of extreme 24-hour rainfall are given in annual probabilities. The probability of experiencing an excessive storm event, however, differs throughout the year. As a result, this paper explored the differences between heavy rainfall distributions by season in Louisiana. It was concluded by using the Kruskal-Wallis and Mann-Whitney tests that the distribution of heavy rainfall events differs significantly between particular seasons at the sites near the Gulf Coast. Furthermore, seasonal frequency curves varied dramatically at the four sites examined. Mixed distributions within these data were not found to be problematic, but the mechanisms that produced the events were found to change seasonally. Extreme heavy rainfall events in winter and spring were primarily generated by frontal weather systems, while summer and fall events had high proportions of events produced by tropical disturbances and airmass (free-convective) conditions.  相似文献   

2.
Abstract: A mix of causative mechanisms may be responsible for flood at a site. Floods may be caused because of extreme rainfall or rain on other rainfall events. The statistical attributes of these events differ according to the watershed characteristics and the causes. Traditional methods of flood frequency analysis are only adequate for specific situations. Also, to address the uncertainty of flood frequency estimates for hydraulic structures, a series of probabilistic analyses of rainfall‐runoff and flow routing models, and their associated inputs, are used. This is a complex problem in that the probability distributions of multiple independent and derived random variables need to be estimated to evaluate the probability of floods. Therefore, the objectives of this study were to develop a flood frequency curve derivation method driven by multiple random variables and to develop a tool that can consider the uncertainties of design floods. This study focuses on developing a flood frequency curve based on nonparametric statistical methods for the estimation of probabilities of rare floods that are more appropriate in Korea. To derive the frequency curve, rainfall generation using the nonparametric kernel density estimation approach is proposed. Many flood events are simulated by nonparametric Monte Carlo simulations coupled with the center Latin hypercube sampling method to estimate the associated uncertainty. This study applies the methods described to a Korean watershed. The results provide higher physical appropriateness and reasonable estimates of design flood.  相似文献   

3.
A probability model for predicting the occurrence and magnitude of thunderstorm rainfall developed in the southwestern United States was tested in the metropolitan Chicago area with reasonable success, especially for the moderate to the extreme runoff-producing events. The model requires the estimation of two parameters, the mean number of events per year and the conditional probability of rain given that an event has occurred. To tie in the data from more than one gage in an area, an event can be defined in several ways, such as the areal mean rainfall exceeding 0.50 inch and at least one gage receiving more than 1.0 inch. This type of definition allows both of the model parameters to be obtained from daily warm-season rainfall records. Regardless of the definition used a Poisson distribution adequately described the number of events per season. A negative binomial distribution was derived as representing the frequency density function for rainfall where several gages are employed in defining a storm. Chicago data fit both distributions very well at events with relatively high return periods. The results indicate the possibility of using the model on a regional basis where limited amount of data may be used to estimate parameters for extensive areas.  相似文献   

4.
The source of the Richelieu River is Lake Champlain, located between the states of New York, Vermont, and Québec. In 2011, the lake and the Richelieu River reached historical flood levels, raising questions about the influence of climate change on the watershed. The objectives of this work are to model the hydrology of the watershed, construct a reservoir model for the lake and to analyze flooding trends using climate simulations. The basin was modeled using the HSAMI lumped conceptual model from Hydro‐Québec with a semi‐distributed approach in order to estimate the inflows into Lake Champlain. The discharge at the Richelieu River was computed by using a mass balance equation between the inputs and outputs of Lake Champlain. Future trends were estimated over the 2041‐2070 and 2071‐2100 periods using a large number of outputs from general circulation models and regional climate models downscaled with constant scaling and daily translation methods. While there is a certain amount of uncertainty as to future trends, there is a decreasing tendency in the magnitude of the mean spring flood. A flood frequency analysis showed most climate projections indicate the severity of most extreme spring floods may be reduced over the two future periods although results are subject to a much larger uncertainty than for the mean spring flood. On the other hand, results indicate summer‐fall extreme events such as caused by hurricane Irene in August 2011 may become more frequent in the future.  相似文献   

5.
A classification scheme for convective precipitation, having applications in both analysis and modeling of meteorological and hydrological events, is presented. The method is based upon observations of rainfall at the ground, radar scans of storm events, and visible and infrared satellite imagery of larger storm systems. Empirical and theoretical frequency distributions are derived for total storm rainfall, rainfall duration and time between storms for each of the convective categories. This stratification is directly applicable to the experimental design and evaluation of weather modification projects and may be useful for the development and interpretation of meteorological and hydrological models. When atmospheric conditions limit storm development to cells, rainfall was seldom observed. Small clusters also produce small amounts of rainfall but have a longer lifetime than cells and are likely candidates for cloud seeding attempts to encourage their growth to large clusters. Large and nested clusters usually produce large amounts of natural precipitation. A few large storms account for most of a season's rainfall.  相似文献   

6.
Extreme climate events, floods, and drought, cause huge impact on daily lives. In order to produce society resilient to extreme events, it is necessary to assess the impact of frequent and high intensity storm events on design parameters. This article describes a methodology to develop future peak “design discharges” throughout the United States that can be used as a guidance to map future floodplains. In order to develop a lower and upper limit for anticipated peak flow discharges, two future growth scenarios — Representative Concentration Pathways (RCPs)‐RCP 2.6 and 8.5 were identified as the weak and strong climate scenario respectively based on the output from the global climate models. The Generalized Least Square technique in United States Geological Survey's Weighted Multiple Regression (WREG) program was used to develop regression equations that relate peak discharges to basin and climate parameters of the contributing watershed. The design discharges reflect the most recent climate model results. Number of frost days, heavy rainfall days, high temperature days, and snow depth were found to be the common extreme climate parameters influencing the regression equations. This methodology can be extended to other flood frequency events if rainfall data is available. The future discharges can be utilized in hydraulics models to estimate floodplains that can assist in resilient infrastructure planning and outline climate change adaptation strategies.  相似文献   

7.
Extreme rainfall frequency analysis provides one means to predict, within certain limits of probability, the average time interval between the recurrences of storms of a specified duration and magnitude. This in turn furnishes the forest hydrologist a valuable tool for engineering design and runoff and erosion forecast. A modification in the application of the annual maximum and annual exceedance series analysis described by V. T. Chow can, for special purposes, lead to an even more useful estimate of extreme events on a seasonal basis. This can be particularly important on small forested headwater watersheds where the runoff response to extreme rainfall may vary considerably with seasonal changes in canopy cover and soil moisture characteristics. Although the application of data covering a relatively short period of record has produced some inconsistencies among the frequency diagrams, under certain circumstances for short-term recurrence interval forecast and for non-critical application the analysis of extreme rainfall frequency from less than 20 years data seems justified.  相似文献   

8.
The storage function model is a nonlinear rainfall-runoff model that has been developed for and applied to flood runoff analysis in Japan. This paper extends the model applicability by developing practical equations for estimating model parameters which are appropriate on a regional basis, i.e., so-called regional equations. Previously, the parameters were computed from historical data for a specific basin or from relationships that do not account for land use and topography. To develop the regionalized equations, model parameters were identified for 91 flood events from 22 watersheds in Japan by applying a mathematical optimization technique. Results from 39 of these events were statistically compared and regional relationships were determined as a function of land use, basin area and rainfall intensity. The utility of the estimated equations were tested by computing runoff hydrographs for lumped basins. The estimated parameters were also applied in a distributed watershed model formulation. Both applications showed acceptable results that validate the use of the regionalized relationships.  相似文献   

9.
Changes in land use and extreme rainfall trends can lead to increased flood vulnerability in many parts of the world, especially for urbanized watersheds. This study investigates the performance of existing stormwater management strategies for the Upper Yahara watershed in Dane County, WI to determine whether they are adequate to protect urban and suburban development from an extreme rainfall. Using extreme storm transposition, we model the performance of the stormwater infiltration practices required for new development under current county ordinances. We find during extreme rainfall the volume of post‐development runoff from impervious surfaces from a typical site would increase by over 55% over pre‐development conditions. We recommend the ordinance be strengthened to reduce vulnerability to flooding from future urban expansion and the likely increase in the magnitude and frequency of extreme storms.  相似文献   

10.
The Gallocanta Basin represents an environment highly sensitive to climate change. Over the past 60 years, the Laguna de Gallocanta, an ephemeral lake situated in the closed Gallocanta basin, experienced a sequence of wet and dry phases. The lake and its surrounding wetlands are one of only a few bird sanctuaries left in NE-Spain for grey cranes on their annual migration from Scandinavia to northern Africa. Understanding the impact of climate change on basin hydrology is therefore of utmost importance for the appropriate management of the bird sanctuary. Changes in lake level are only weakly linked to annual rainfall, with reaction times between hours and months after rainfall. Both the total amount of rainfall over the reaction period, as well as individual extreme events, affect lake level. In this study the characteristics and frequencies of daily, event, monthly and bi-monthly rainfall over the past 60 years were analysed. The results revealed a clear link between increased frequencies of high magnitude rainfall and phases of water filling in the Laguna de Gallocanta. In the middle of the 20th century, the absolute amount of rainfall appears to have been more important for lake level, while more recently the frequency of high magnitude rainfall has emerged as the dominant variable.  相似文献   

11.
Most beneficial management practices (BMPs) recommended for reducing nutrient losses from agricultural land have been established and tested in temperate and humid regions. Previous studies on the effects of these BMPs in cold-climate regions, especially at the small watershed scale, are rare. In this study, runoff and water quality were monitored from 1999 to 2008 at the outlets of two subwatersheds in the South Tobacco Creek watershed in Manitoba, Canada. Five BMPs-a holding pond below a beef cattle overwintering feedlot, riparian zone and grassed waterway management, grazing restriction, perennial forage conversion, and nutrient management-were implemented in one of these two subwatersheds beginning in 2005. We determined that >80% of the N and P in runoff at the outlets of the two subwatersheds were lost in dissolved forms, ≈ 50% during snowmelt events and ≈ 33% during rainfall events. When all snowmelt- and rainfall-induced runoff events were considered, the five BMPs collectively decreased total N (TN) and total P (TP) exports in runoff at the treatment subwatershed outlet by 41 and 38%, respectively. The corresponding reductions in flow-weighted mean concentrations (FWMCs) were 43% for TN and 32% for TP. In most cases, similar reductions in exports and FWMCs were measured for both dissolved and particulate forms of N and P, and during both rainfall and snowmelt-induced runoff events. Indirect assessment suggests that retention of nutrients in the holding pond could account for as much as 63 and 57%, respectively, of the BMP-induced reductions in TN and TP exports at the treatment subwatershed outlet. The nutrient management BMP was estimated to have reduced N and P inputs on land by 36 and 59%, respectively, in part due to the lower rates of nutrient application to fields converted from annual crop to perennial forage. Overall, even though the proportional contributions of individual BMPs were not directly measured in this study, the collective reduction of nutrient losses from the five BMPs was substantial.  相似文献   

12.
Abstract: Climate change, particularly the projected changes to precipitation patterns, is likely to affect runoff both regionally and temporally. Extreme rainfall events are expected to become more intense in the future in arid urban areas and this will likely lead to higher streamflow. Through hydrological modeling, this article simulates an urban basin response to the most intense storm under anthropogenic climate change conditions. This study performs an event‐based simulation for shorter duration storms in the Flamingo Tropicana (FT) watershed in Las Vegas, Nevada. An extreme storm, defined as a 100‐year return period storm, is selected from historical records and perturbed to future climatic conditions with respect to multimodel multiscenario (A1B, A2, B1) bias corrected and spatially disaggregated data from the World Climate Research Programme's (WCRP's) database. The cumulative annual precipitation for each 30‐year period shows a continuous decrease from 2011 to 2099; however, the summer convective storms, which are considered as extreme storms for the study area, are expected to be more intense in future. Extreme storm events show larger changes in streamflow under different climate scenarios and time periods. The simulated peak streamflow and total runoff volume shows an increase from 40% to more than 150% (during 2041‐2099) for different climate scenarios. This type of analysis can help evaluate the vulnerability of existing flood control system and flood control policies.  相似文献   

13.
ABSTRACT: Detailed studies of the surface hydrology of reclaimed surface-mined watersheds for both rainfall and snowmelt events are non-existent for central Alberta yet this information is crucial for design of runoff conveyance and storage structures. A study was initiated in 1992 with principal objectives of quantifying surface runoff for both summer rainfall and spring snowmelt events and identifying the dominant flow processes occurring in two reclaimed watersheds. Snowmelt accounted for 86 and 100% of annual watershed runoff in 1993 and 1994, respectively. The highest instantaneous peak flow was recorded during a summer rainfall event with a return period of greater than 50 years. Infiltration-excess overland flow was identified as the dominant flow process occurring within the Sandy Subsoil Watershed, whereas saturation overland flow was the principal runoff process occurring within the West Watershed.  相似文献   

14.
Applications of systems methodology to water problems of the Tucson basin are summarized. Natural recharge is estimated by means of a discrete convolution relation in which the unit impulse response of an aquifer is derived from basic hydro-dynamic laws. A temporal model of sequences of wet and dry periods during the summer thunderstorm season is based on a multiple linear regression equation that relates total rainfall amount during the wet period to the duration of the wet period and volume of peak rainfall. A spatial model predicts point rainfall frequency of maximal and minimal amounts of thunderstorm rainfall. A static management model allocates Tucson groundwater, Avra Valley water, Colorado River water, and reclaimed waste water to municipal, industrial, and agricultural users within a pricing framework. For a range of pricing policies the model clearly demonstrates the opportunity costs to the community by use of higher-priced water supplies such as Colorado River water in lieu of Tucson groundwater. The role of worth of data studies in relation to data analysis, model building and management studies is also introduced.  相似文献   

15.
Stanfield, Les W. and Don A. Jackson, 2011. Understanding the Factors That Influence Headwater Stream Flows in Response to Storm Events. Journal of the American Water Resources Association (JAWRA) 1‐22. DOI: 10.1111/j.1752‐1688.2010.00518.x Abstract: Headwater drainage features (first‐ to second‐order streams) are the capillaries of the landscape that, among other things, moderate the timing and volumes of water available to the riparian and aquatic ecosystems. How these features respond to summer rainfall is poorly understood. We studied how geology and an index of land use/land cover influenced peak flows following rainfall events in 110 headwater stream sites that were studied over a four‐month period during a drought year. Highest peak flows were observed in the most urbanized catchments and in poorly drained soils, but specific responses were variable depending on both geology and land disturbance. Redundancy analysis indicated that both surficial geology and land disturbance were important factors influencing peak flows under drought conditions. We conclude that responses of these headwater streams to individual storms during drought conditions are unpredictable from data collected using our methods, but increased peak flows were associated with increased urban and agricultural development, but mitigated by surficial geology. These findings demonstrate the challenges to accurately predict flow conditions in headwater streams during periods of extreme weather that concurrently have the greatest potential effect on biota. The combination of these challenges and importance of such events indicates the need to develop new approaches to study and manage these resources.  相似文献   

16.
The aim of this study is to identify temporal and spatial variability patterns of annual and seasonal rainfall in Mexico. A set of 769 weather stations located in Mexico was examined. The country was divided into 12 homogeneous rainfall regions via principal component analysis. A Pettitt test was conducted to perform a homogeneity analysis for detecting abrupt changes in mean rainfall levels, and a Mann‐Kendall test was conducted to examine the presence of monotonically increasing/decreasing patterns in the data. In total, 14.4% of the annual series was deemed nonstationary. Fourteen percent of the samples were nonstationary in the winter and summer, and 9% were nonstationary in the spring and autumn. According to the results, the nonstationarity of some seasonal rainfall series may be associated with the presence of atmospheric phenomena (e.g., El Niño/Southern Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, and North Atlantic Oscillation). A rainfall frequency analysis was performed for the nonstationary annual series, and significant differences in the return levels can be expected for the scenarios analyzed. The identification of areas that are more susceptible to changes in rainfall levels will improve water resource management plans in the country, and it is expected that these plans will take into account nonstationary theory.  相似文献   

17.
Despite the advances in climate change modeling, extreme events pose a challenge to develop approaches that are relevant for urban stormwater infrastructure designs and best management practices. The study first investigates the statistical methods applied to the land‐based daily precipitation series acquired from the Global Historical Climatology Network‐Daily (GHCN‐D). Additional analysis was carried out on the simulated Multivariate Adaptive Constructed Analogs (MACA)‐based downscaled daily extreme precipitation of 15 General Circulation Models and Weather Research and Forecasting‐based hourly extreme precipitation of North American Regional Reanalysis to discern the return period of 24‐hr and 48‐hr events. We infer that the GHCN‐D and MACA‐based precipitation reveals increasing trends in annual and seasonal extreme daily precipitation. Both BCC‐CSM1‐1‐m and GFDL‐ESM2M models revealed that the magnitude and frequency of extreme precipitation events are projected to increase between 2016 and 2099. We conclude that the future scenarios show an increase in magnitudes of extreme precipitation up to three times across southeastern Virginia resulting in increased discharge rates at selected gauge locations. The depth‐duration‐frequency curve predicted an increase of 2–3 times in 24‐ and 48‐h precipitation intensity, higher peaks, and indicated an increase of up to 50% in flood magnitude in future scenarios.  相似文献   

18.
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events.  相似文献   

19.
Trapping phosphorus in runoff with a phosphorus removal structure   总被引:2,自引:0,他引:2  
Reduction of phosphorus (P) inputs to surface waters may decrease eutrophication. Some researchers have proposed filtering dissolved P in runoff with P-sorptive byproducts in structures placed in hydrologically active areas with high soil P concentrations. The objectives of this study were to construct and monitor a P removal structure in a suburban watershed and test the ability of empirically developed flow-through equations to predict structure performance. Steel slag was used as the P sorption material in the P removal structure. Water samples were collected before and after the structure using automatic samples and analyzed for total dissolved P. During the first 5 mo of structure operation, 25% of all dissolved P was removed from rainfall and irrigation events. Phosphorus was removed more efficiently during low flow rate irrigation events with a high retention time than during high flow rate rainfall events with a low retention time. The six largest flow events occurred during storm flow and accounted for 75% of the P entering the structure and 54% of the P removed by the structure. Flow-through equations developed for predicting structure performance produced reasonable estimates of structure "lifetime" (16.8 mo). However, the equations overpredicted cumulative P removal. This was likely due to differences in pH, total Ca and Fe, and alkalinity between the slag used in the structure and the slag used for model development. This suggests the need for an overall model that can predict structure performance based on individual material properties.  相似文献   

20.
Spence, Porchè L., Deanna L. Osmond, Wesley Childres, Joshua L. Heitman, and Wayne P. Robarge, 2012. Effects of Lawn Maintenance on Nutrient Losses Via Overland Flow During Natural Rainfall Events. Journal of the American Water Resources Association (JAWRA) 48(5): 909‐924. DOI: 10.1111/j.1752‐1688.2012.00658.x Abstract: A sampling system was used to evaluate the effect of residential lawn management on nutrient losses via overland flow generated during natural rainfall events from three residential landscapes: a high maintenance fescue lawn (HMFL), a low maintenance fescue lawn (LMFL), and a mixed forested residential landscape (FRL). A sampling system was located in designated areas within each landscape such that 100% of the runoff follows natural flow paths to the outlet ports and collects in sterile Nalgene® B3 media bags (Thermo Fisher Scientific, Rochester, NY). A rainfall event was defined as producing ≥2.54 mm of water. A total of 87 rainfall events occurred during a 20‐month monitoring period. The total runoff volume collected from the LMFL was higher than from the HMFL and FRL, but on average <1% of the total rainfall was collected from the three landscapes. Mean nitrate concentrations from each lawn did not exceed 0.6 mg N/l. Nutrient unit area losses from the HMFL, LMFL, and FRL were 1,000 times less than fertilizer and throughfall inputs, which were due to the presence of well‐structured soils (low bulk densities) with high infiltration rates. This study demonstrated that the frequency of runoff, total runoff volumes, and nutrient losses during natural rainfall events are lower from highly maintained (i.e., irrigation, fertilizer application, and reseeding) densely uniform manicured lawns than low maintenance lawns and forested residential landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号