首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
近年来,抗生素的大量使用对生态环境和人类健康构成了严重威胁.抗生素去除技术开发引起了人们的广泛关注.本研究制备了4种具有良好水热稳定性的锆基金属骨架有机材料(UiO-66,UiO-66-NH_2,UiO-66-Cl和UiO-66-NO_2),通过比较4种材料对水中痕量磺胺氯哒嗪(SCP)的吸附性能,从中筛选出最佳吸附剂,进而探究了温度、pH、共存阴离子、腐殖酸和可再生性等因素对其吸附性能的影响,探讨了作用机制.研究结果表明,功能基团的引入提升了金属骨架有机材料对SCP的吸附性能,其中氨基的引入效果最为显著(去除率从11.62%提升至71.12%),这主要是由于氢键的作用;UiO-66-NH_2对SCP的吸附符合拟二级动力学,温度的升高抑制了吸附的进行,pH=6时吸附效果最好;Cl-和SO_4~(2-)对UiO-66-NH_2吸附性能起到了抑制作用,而腐殖酸影响较小;CO_3~(2-)的水解导致路易斯酸碱反应,从而极大地干扰了SCP的吸附过程;UiO-66-NH_2经过四次循环使用后,SCP去除率下降不到10%.本研究为采用功能化金属有机骨架材料去除水中污染物提供了新思路.  相似文献   

2.
制备了锆氧化物(ZrO_2)含量分别为2.98%、7.81%、13.73%和33.70%的4种锆镁改性膨润土,并考察了锆负载量对锆镁改性膨润土吸附水中磷酸盐的影响.结果表明,较高的吸附剂投加量有利于水中磷酸盐被锆镁改性膨润土所吸附去除.锆镁改性膨润土吸附水中磷酸盐的动力学过程符合准二级动力学模型.锆镁改性膨润土对水中磷酸盐的吸附等温行为可以采用Langmuir、Freundlich和Dubinin-Redushckevich (D-R)等温吸附模型进行描述.增加溶液pH值不会导致锆镁改性膨润土对水中磷酸盐吸附能力的下降.锆镁改性膨润土对水中磷酸盐的吸附能力随其锆含量的增加而增加.但是,从总体上,锆镁改性膨润土中单位质量ZrO_2对水中磷酸盐的最大吸附量则随其锆含量的增加而降低.研究结果说明,锆镁改性膨润土适合作为一种吸附剂去除水中的磷酸盐,较高的锆负载量有利于增强锆镁改性膨润土吸附水中磷酸盐的能力,而较低的锆负载量则有利于提高锆镁改性膨润土中单位质量ZrO_2对水中磷酸盐的吸附能力.  相似文献   

3.
Fe3O4/C纳米粒子的制备及其对水中罗丹明B的去除   总被引:1,自引:0,他引:1  
张春荣  闫李霞  申大忠  陈令新 《环境化学》2012,31(11):1669-1675
采用溶剂热-水热法合成了碳覆盖的Fe3O4纳米粒子Fe3O4/C,利用扫描电镜(SEM)与红外光谱(FT-IR)对其进行了表征,并研究了其对水中罗丹明B的吸附性能.系统考察了吸附动力学、吸附等温线、吸附剂用量对吸附性能的影响.Fe3O4/C对罗丹明B的吸附在3 h内即可达到平衡,最大吸附量可达13.23 mg.g-1.分别用Langmuir和Freundlich吸附模型解释了Fe3O4/C对罗丹明B的作用机理,吸附反应过程符合准二级动力学方程.结果表明,该吸附剂具有良好的磁效应和吸附性能,可快速去除罗丹明B,去除率高达90%以上;吸附剂可重复利用,成本低,具有环境友好的优势.  相似文献   

4.
采用镧(La)和阳离子表面活性剂十六烷基三甲基氯化铵(HDTMA-Cl)对活性炭进行联合改性,并考察了La和HDTMA联合改性活性炭(La-HDTMA改性活性炭)对水中磷酸盐和硝酸盐的吸附性能.实验结果表明,La-HDTMA改性活性炭对磷酸盐和硝酸盐具备一定的吸附去除能力.La-HDTMA改性活性炭对水中磷酸盐和硝酸盐的吸附动力学过程符合准二级动力学模型,吸附平衡数据可以采用Langmuir、Freundlich和Dubinin-Radushkevich(D-R)等温吸附模型加以描述.根据Langmuir等温吸附模型计算得到的La-HDTMA改性活性炭对磷酸盐和硝酸盐最大吸附量分别为4.15 mg·g-1和11.2 mg·g-1.当p H值由4增加到8时,La-HDTMA改性活性炭对水中磷酸盐的吸附能力增加;当p H值超过8时,对磷酸盐的吸附能力则下降.LaHDTMA改性活性炭对水中硝酸盐的吸附能力随p H值的增加而下降.水中共存的Cl-、HCO-3和SO2-4等阴离子会抑制La-HDTMA改性活性炭对磷酸盐和硝酸盐的吸附.水中共存的硝酸盐会抑制La-HDTMA改性活性炭对磷酸盐的吸附,共存的磷酸盐亦会抑制La-HDTMA改性活性炭对硝酸盐的吸附.采用1 mol·L-1Na OH溶液可以使71%吸附剂上的磷酸盐解吸下来,采用1 mol·L-1的Na Cl溶液可以使97%吸附剂上的硝酸盐解吸下来.La-HDTMA改性活性炭对水中磷酸盐的吸附机制主要是阴离子交换、静电吸引、配位体交换作用和路易斯酸碱反应,对硝酸盐的吸附机制主要是阴离子交换和静电吸引作用.  相似文献   

5.
本文采用多孔陶瓷作为基体制备了锆基金属有机骨架UiO-66@多孔陶瓷复合材料.通过扫描电子显微镜(SEM)、粉末X射线衍射(PXRD)、氮气吸附和傅里叶变换红外光谱(FTIR)等表征手段对比了氢氧化钠脱硅和乙二胺表面改性等基体活化方式对UiO-66(Zr)在多孔陶瓷表面负载情况的影响.结果表明,经过乙二胺表面改性的多孔陶瓷对UiO-66(Zr)的负载更均匀,负载效果更好.以EDTA-Cu(Ⅱ)为考察对象,研究了UiO-66(Zr)@乙二胺表面改性多孔陶瓷复合材料对络合态重金属的净化效能.结果表明,UiO-66(Zr)@多孔陶瓷复合材料在较宽的酸碱条件下(pH=3—9)对络合态重金属EDTA-Cu(Ⅱ)均表现出良好的吸附性能,饱和吸附量为1.17 mg·g~(-1),并可通过NaOH解吸再生,从而实现材料的重复利用.  相似文献   

6.
利用好氧颗粒污泥对酸性淡黄2G溶液进行吸附脱色研究,考察了pH值、吸附剂用量、初始酸性淡黄2G的浓度、温度以及NaCl浓度对吸附过程的影响.实验结果表明,吸附过程对溶液pH值具有很高的依赖性,其最佳pH值为2.0.Temkin等温线在整个实验染料浓度范围内能够很好地描述吸附过程.吸附动力学符合准二级动力学模型.内部扩散和边界层扩散都可能影响生物吸附速率.热力学分析表明,吸附过程是一个自发的放热过程.采用FTIR分析的结果进一步揭示了颗粒污泥上官能团(如胺基、羧基和羟基等)可能是染料生物吸附的活跃结合位点.这些结果表明,好氧颗粒污泥可以作为吸附剂以去除水中的酸性淡黄2G。  相似文献   

7.
采用La3+、Fe~(2+)、Fe3+和粉末状天然沸石制备了一种镧-Fe_3O_4-沸石复合材料,通过批量吸附实验考察了该复合材料对水中磷酸盐和铵的吸附作用.结果表明,镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的单位吸附量随吸附剂投加量的增加而降低,对磷酸盐和铵的去除率随吸附剂投加量的增加而增加.当溶液pH值由6逐渐增加到11时,镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的吸附能力逐渐下降.镧-Fe_3O_4-沸石复合材料对水中磷酸盐的吸附平衡数据可以采用Langmuir、Freundlich和Dubinin-Redushkevich(D-R)等温吸附模型加以拟合,对铵的吸附平衡数据可以采用Langmuir和D-R等温吸附模型加以拟合.根据Langmuir模型计算得到的镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的最大单位吸附量分别为12.9 mg·g~(-1)(以磷计)和6.99 mg·g~(-1)(以铵计).镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的吸附动力学过程可以采用准二级动力学方程加以描述.升高反应温度增强了镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的吸附.溶液存在的氯离子、硫酸根离子和碳酸氢根离子对镧-Fe_3O_4-沸石复合材料吸附磷无负面影响.溶液存在的钾离子对镧-Fe_3O_4-沸石复合材料吸附铵的负面影响最大,其次为钠离子,钙离子的负面影响最小.1 mol·L~(-1)NaOH溶液可以使50%左右吸附到吸附剂上的磷酸盐解吸下来.1 mol·L~(-1)NaCl溶液可以使98%左右吸附到吸附剂上的铵解吸下来.当溶液pH值为7时,镧-Fe_3O_4-沸石复合材料对磷酸盐的吸附机制主要是配位体交换作用.镧-Fe_3O_4-沸石复合材料对铵的吸附机制主要是阳离子交换作用.  相似文献   

8.
研究凹凸棒土负载铁盐吸附剂的制备及其对As(Ⅴ)的吸附性能.考察了pH、凹凸棒土热改性温度、粒度、铁盐浓度等因素对吸附As(Ⅴ)性能的影响.结果表明,热改性温度为600℃的凹凸棒土负载铁盐吸附剂吸附As(Ⅴ)效果比200℃和400℃都好,其对As(Ⅴ)的吸附行为符合Freundlich模型.当pH值6.0时,600℃热改性200—400目的凹凸棒土负载0.5 mol·L-1Fe(NO3)3吸附剂的最大吸附量为1.1669 mg·g-1,重复使用时性能稳定,具有处理含As(Ⅴ)废水的应用前景.  相似文献   

9.
本研究利用稻壳制备高介孔率生物炭,然后用共沉淀法负载金属La、Al,制得镧铝改性稻壳基生物炭吸附剂.通过控制反应时间、磷浓度、共存阴离子、初始pH等条件,研究共存钙离子时对吸附剂除磷性能的影响.结果表明,La、Al在稻壳基生物炭上负载后呈无定型态;吸附剂的除磷过程符合伪二阶动力学模型和Langmuir模型,且Ca~(2+)的加入有利于提高磷的去除率,含Ca~(2+)体系的最终除磷效果是无Ca~(2+)时的2.6倍;含竞争阴离子时,Ca~(2+)的加入会使F~-对磷吸附的抑制作用减弱,使HCO_3~-对磷吸附的抑制作用略微增强;在pH值为2.0—8.0时,Ca~(2+)能提高改性生物炭的吸附容量,而pH8.0时主要是钙离子与磷酸盐的沉淀作用使体系中磷大量被去除.  相似文献   

10.
本文利用腈纶纤维(PANF)便于回收、易于修饰、价格低廉等优点,通过不同链长卤代烃的季铵化反应,构建系列极性可调的功能化腈纶纤维,通过红外光谱、扫描电镜、X-射线衍射等技术进行表征,并研究纤维表层极性调控对水体磷酸盐的吸附性能的影响.结果 表明,正溴丁烷修饰的季铵化纤维(PANT-C4F)对磷的吸附能力(25 mg·g-1P)优于正溴己烷和正溴辛烷修饰的季铵盐功能化纤维(PANT-C6F、PANT-C8F).改性纤维材料的吸附动力学更符合准二级动力学模型,吸附等温线采用Langmuir模型拟合更优,说明功能化纤维对磷的去除主要为单分子层化学吸附.PANT-C4F在pH 7左右时,对磷的吸附效果最好,且3 min达到平衡,因此具有较高的吸附效率.此外,PANT-C4F吸附的磷酸盐可以在NaCl溶液中解吸附,至少可以循环5次以上,实现功能化纤维的循环利用和磷的有效回收.研究表明,PANT-C4F是一种高效的水体磷酸盐吸附材料,具有较高的实际应用价值.  相似文献   

11.
壳聚糖复合吸附剂去除水源水中天然有机物的试验   总被引:2,自引:0,他引:2  
以壳聚糖为基质,制备出壳聚糖-活性炭复合吸附剂。并研究了其对水源水中天然有机物的吸附性能,以及吸附操作条件的影响。结果表明,壳聚糖复合吸附剂结合了二者的优势,对天然有机物具有较好的吸附效果,pH是影响吸附的主要因素。  相似文献   

12.
使用磷酸盐溶液和方解石之间的反应得到方解石去除水中磷酸盐后的产物,即磷酸盐改性方解石,通过实验对比分析了方解石和磷酸盐改性方解石对水中磷酸盐的去除动力学,并考察了磷酸盐改性方解石去除水中磷酸盐的各种影响因素。磷酸盐改性方解石对水中磷酸盐的去除能力明显优于方解石。当反应时间为2h时,实验条件下磷酸盐改性方解石对水中磷的去除率达到72%,而方解石对磷的去除率仅为35%。当pH为5~7时,磷酸盐改性方解石对水中磷酸盐的去除能力较高;当pH由7增加到10 h,对磷酸盐的去除能力略微下降;当pH由10增加到12 h,对磷酸盐的去除能力急剧下降。磷酸盐改性方解石对水中磷酸盐的单位去除量随初始磷质量浓度的增加而增加。过高的初始磷质量浓度会导致磷酸盐改性方解石对水中磷酸盐的去除率过低。磷酸盐改性方解石对水中磷酸盐的去除能力随反应温度的升高而增加。磷酸盐改性方解石对水中磷酸盐的去除动力学可以较好地采用准二级动力学模型加以描述。水中共存的钙离子有利于磷酸盐改性方解石对磷酸盐的去除,而水中共存的碳酸氢根离子抑制了磷酸盐改性方解石对磷酸盐的去除。磷酸盐改性方解石去除水中磷酸盐的主要机制是磷酸钙沉淀作用。磷酸盐改性方解石不仅会为磷酸钙沉淀反应的异质成核提供核心,促进磷酸钙沉淀的形成,而且当水处于对方解石不饱和状态时会溶解释放出可溶性钙,为磷酸钙沉淀的形成提供钙源。上述结果表明,方解石去除水中磷酸盐后的产物可以被再次用于水中磷酸盐的去除,并且对磷酸盐的去除效果优于原始的方解石。  相似文献   

13.
利用蒙脱石、FeCl_3·6H_2O制备出改性蒙脱石复合体,并对蒙脱石、铁氧化物及其改性复合体吸附水中As(Ⅲ)的效能进行对比试验。结果表明:这3者对水中As(Ⅲ)的吸附动力学均符合Lagergren速度模型,且均属于Freundlich等温吸附。复合体的沉降效率明显优于其他2种吸附剂,且对含As(Ⅲ)溶液的pH值具有很好调节能力。SO_4~(2-)和Mg~(2+)浓度对As(Ⅲ)的去除基本无影响,Ca~(2+)能促进As(Ⅲ)的吸附,NO_3~-、PO_4~(3-)与As(Ⅲ)存在较强的竞争吸附。  相似文献   

14.
地热温泉常含有高浓度的氟,给温泉利用带来不可忽视的环境问题,因此温泉水中氟离子吸附净化处理是重要的研究热点.本文采用废弃茶叶作为吸附剂,氟离子为目标离子,优化了茶叶吸附剂种类、溶液pH对吸附效果的影响.在pH 3、初始浓度为5 mg·L-1时,大红袍茶叶对氟离子的吸附容量达到0.126 mg·g-1.进一步考察了吸附剂对氟离子的吸附机制,结果表明,氟离子吸附符合Pseudo-secondorder动力学模型,等温线符合Freundlich模型,氟离子吸附过程主要通过与茶叶中的羟基和羧基活性基团发生交换作用.茶叶氟吸附量虽较其它天然吸附剂略低但无需复杂改性和前处理,具有环境友好,成本低廉,来源丰富,易与获得等优点,在含氟水净化处理具有潜在应用和发展前景.  相似文献   

15.
采用静态吸附法研究了不同比例钙铝、铁铝、锰铝的磷酸盐共沉物的除氟性能,比较发现,铝与铁的磷酸盐共沉物除氟效果最好,锰离子对磷酸铝的除氟效果则有明显的抑制作用。以吸附性能较好的1∶100铁铝比例的磷酸盐共沉物为吸附剂,研究了接触时间、pH值、吸附剂量等对其除氟效果的影响,结果表明,在25℃、氟离子初始质量浓度为10 mg.L-1、pH值为6~8、振荡时间为90 m in、投加量为2.5 g.L-1条件下,1∶100铁铝比例的磷酸盐共沉物对氟的吸附量可达2.7 mg.g-1。  相似文献   

16.
考察了氢氧化镧改良沉积物对水中磷酸盐的吸附特征,并考察了被改良沉积物所吸附磷酸盐的形态分布特征.结果发现,氢氧化镧改良沉积物对水中低浓度磷酸盐的吸附可以采用线性模型进行描述,而对高浓度磷酸盐的吸附则适合采用Langmuir模型进行描述.准二级动力学比准一级动力学模型更适合用于拟合改良沉积物对水中磷酸盐的吸附动力学过程,膜扩散和颗粒内扩散共同控制了缓慢吸附阶段的速率.强碱性条件不利于改良沉积物对水中磷酸盐的吸附.溶液共存的Cl~-、SO_4~(2-)、HCO~3~-、Na~+、K~+和Mg~(2+)对改良沉积物吸附水中磷酸盐的影响较小,而溶液共存的Ca~(2+)会促进改良沉积物对水中磷酸盐的吸附.改良沉积物对水中磷酸盐的吸附能力明显强于未改良沉积物.改良沉积物的最大磷酸盐单位吸附量明显高于未改良沉积物,并且改良沉积物的最大单位吸附量随着氢氧化镧添加量的增加而增加.改良沉积物的初始吸附速率随着氢氧化镧添加量的增加也随之增加.改良沉积物的磷吸附-解吸平衡浓度(EPC0)明显低于未改良沉积物.被改良沉积物所吸附的磷酸盐中大部分(84%)以较为稳定的NaOH-rP和HCl-P形态存在,仅仅只有16%左右会以容易释放的NH_4Cl-P和BD-P形态存在.以上结果显示,添加氢氧化镧不仅可以增强沉积物对水中磷酸盐的吸附能力,而且可以降低沉积物中磷的释放风险,氢氧化镧是一种有希望的可以用于沉积物内源磷释放的改良剂.  相似文献   

17.
针对水中四环素有机污染物去除,选择Cu(Ⅱ)表面修饰的成型分子筛Cu-13X(s)为吸附剂,系统研究了吸附行为,考察了吸附剂的再生使用性能.结果表明:Cu-13X(s)分子筛晶型、形貌及硅铝比与交换前基本一致.吸附动力学研究表明该过程符合准二级动力学模型;对于高浓度四环素水溶液,颗粒内扩散为吸附的速控步,但不是唯一的速控步.四环素在Cu-13X(s)分子筛上的吸附均符合Langmuir单分子层吸附模型,是自发且混乱度降低的放热过程.Cu-13X(s)再生4次后,去除率稳定,具有良好的再生使用性能.  相似文献   

18.
以废柚子皮为原料,经ZnCl2浸泡-加热的化学改性手段制备改性柚子皮生物吸附剂,并通过模拟试验研究该吸附剂对废水中pb2+的去除.考察了模拟废水的pH、吸附时间、吸附剂用量和pb2+初始浓度、温度等因素对柚子皮吸附剂去除pb2+的影响,并研究柚子皮吸附剂对pb2+的吸附动力学及吸附特征.结果表明,模拟废水的pH、吸附时间、吸附剂用量和pb2+初始浓度、温度等因素对柚子皮吸附剂吸附废水中pb2+均有显著影响.适宜的吸附条件为pH5.3~6.5,吸附时间1.5h,吸附剂用量10g· L-1,pb2初始质量浓度100 mg·L-1,温度30℃.在该条件下,废水中pb2+去除率在90%以上.柚子皮吸附剂对废水中pb2+的吸附符合动力学二级反应方程,等温吸附规律可用Langmuir、Freundlich和Temkin模型进行较好的描述.  相似文献   

19.
将稀土矿渣废弃物煅烧制备成具有优良吸附脱磷性能的低成本吸附剂(CRES)。通过扫描电镜(SEM)、红外光谱(FTIR)、X射线荧光光谱(XRF)、比表面与孔分析(BET-BJH)、热重分析(TGA)等手段对制备的CRES进行系统表征。研究了CRES对磷吸附–解吸附过程的吸附等温线和吸附动力学,并考察了溶液pH值对磷吸附的影响。结果表明,CRES具有较好的孔隙结构,表面含有Ba、V、Si、Y、Ca、Fe、Yb等金属和类金属元素化合物,溶液pH值(2.2~10.0)对磷吸附无明显影响。Langmuir模型能较好拟合等温吸附数据(R2=0.932 5,n=5),CRES对磷酸根的最大吸附能力达152 mg·g-1,高于普遍报道的除磷吸附剂的吸附能力。吸附动力学试验表明,吸附过程在4~6 min就达到平衡,准二级动力学模型很好地描述了吸附过程,表明化学吸附起到主导作用;物理吸附过程主要存在于吸附的初始阶段,这与CRES表面含有多种金属和类金属元素以及良好的孔隙系统有关。  相似文献   

20.
在四氧化三铁表面采用原位化学氧化合成了磁性聚吡咯(Ppy/Fe_3O_4)吸附剂,并用FTIR、XRD、TGA、XPS以及VSM等对材料进行表征.结果表明,聚吡咯成功包覆到Fe_3O_4表面,且具有超顺磁性.吸附实验结果表明,Ppy/Fe_3O_4对水中硝酸盐(NO_3~-)具有较好的吸附性能,在NO_3~-初始浓度为50 mg·L~(-1)条件下,当pH值为4.2时,温度为25℃下吸附剂对NO_3~-的吸附效果最佳,最佳吸附量为37.57 mg·g~(-1),阴离子的存在对NO_3~-吸附具有抑制作用.Ppy/Fe_3O_4对NO_3~-的吸附可以通过Langmuir模型很好地描述,吸附过程服从拟二级动力学,并且吸附速率随着NO_3~-初始浓度的增加而增加.磁性聚吡咯通过表面质子化氮与NO_3~-之间的静电作用而达到去除的目的.吸附饱和的吸附剂可以很好地进行磁性分离,并可以在0.01 mol·L~(-1)的NaCl溶液中进行脱附再生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号