首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   6篇
综合类   9篇
基础理论   2篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2014年   1篇
  2003年   1篇
  2002年   1篇
  1993年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
介绍了电脉冲对粉体成形的原理。从电迁移和电脉冲作用下的非平衡相变讨论了粉体成形的机理 ,为块状纳米材料的制备提供一个新思路  相似文献   
2.
首先采用Fe~(3+)、Fe~(2+)、溶解性锆盐、膨润土和碱液作为原料制备得到了一种磁性锆铁改性膨润土,再通过底泥培养实验考察了磁性锆铁改性膨润土添加对底泥中磷迁移与形态转化的影响.结果表明,在缺氧条件下,河道底泥中磷会被释放进入间隙水中,继而会被释放进入上覆水中,而磁性锆铁改性膨润土添加可以极大地降低底泥中磷向间隙水的迁移通量,最终导致了上覆水中磷数量的显著下降.此外,添加磁性锆铁改性膨润土不仅促使底泥中弱吸附态磷(Liable-P)和氧化还原敏感态磷(BD-P)这2种容易释放态磷向较为稳定的金属氧化物结合态磷(NaOH-rP)和非常稳定的残渣态磷(Res-P)转变,而且降低了底泥中水溶性磷(WSP)、易解吸磷(RDP)、NaHCO_3可提取磷(Olsen-P)、藻类可利用磷(AAP)和铁氧化物-滤纸提取磷(FeO-P)这5种不同类型生物有效态磷(BAP)含量,从而降低了底泥中磷的释放风险.从底泥中分离出来的磁性锆铁改性膨润土中潜在活性磷(NH4Cl-P+BD-P)占总磷的26%左右,且含一定数量的FeO-P和Olsen-P(含量分别为161 mg·kg~(-1)和127mg·kg~(-1)).因此,及时采用磁分离的方式从底泥中将吸附磷后的磁性锆铁改性膨润土回收是非常必要的.磁性锆铁改性膨润土添加控制河道底泥中磷释放的机制是:改良剂通过对底泥中潜在活性磷和生物有效态磷的钝化作用,以及通过对间隙水中磷的吸附作用,降低了底泥中磷向间隙水的释放风险,导致间隙水中磷浓度的下降,进而降低了底泥-上覆水界面磷的扩散通量,最终导致上覆水中磷浓度的下降.以上结果说明,磁性锆铁改性膨润土是一种非常有希望的用于控制河道底泥中磷释放的改良剂.  相似文献   
3.
本文研究了物理扰动对锆改性沸石改良底泥吸附水中磷酸盐的影响,并考察了其对锆改性沸石改良底泥中磷赋存形态和生物可利用性的影响.结果表明,与未改良底泥相比,锆改性沸石改良底泥对水中磷酸盐的吸附能力明显更强.但是,物理扰动却降低了锆改性沸石改良底泥对水中磷酸盐的吸附容量和吸附速率.在物理扰动状态下培养的锆改性沸石改良底泥的最大磷酸盐吸附容量(743 mg·kg~(-1)),比在静止状态下培养的锆改性沸石改良底泥的最大吸附容量(902 mg·kg~(-1))低18%左右.物理扰动对锆改性沸石改良底泥的磷形态和生物可利用性产生一定的影响.物理扰动略微降低了改良底泥中氧化还原敏感态磷(BD-P)和金属氧化物结合态磷(NaOH-rP)含量,但是却会略微增加改良底泥中残渣态磷(Res-P)含量.另外,物理扰动还会略微降低改良底泥中藻类可利用磷(AAP)和NaHCO_3可提取磷(Olsen-P)的生物可利用性磷含量.物理扰动虽然略微降低了改良底泥对水中磷酸盐的吸附能力,但是却略微促进了锆改性沸石对底泥中潜在可移动态磷和生物可利用性磷的钝化.  相似文献   
4.
“科学-技术-社会”(STS)教育早在二次大战期间就已提出,并受到世界各国的高度重视。80年代以来,探索科学、技术与社会关系的课程(STS课程)在西方国家的理工科院校中悄然兴起。从经验积累、体系和目标完善取得的效果看,以美、英、澳三国为代表。虽然至今各国对STS教育的定义还未统一,但其基本精神是一致的。即针对新技术革命带来的一系列问题(包括环境问题)而导致许多国家出现了社会和科学技术明显分离;自然科学和人文科学相互脱节之状况而提出的如何探索三方面相互联结的教育研究课程,其目的是培养  相似文献   
5.
通过我们对佳木斯市农药三厂污水治理技术的深入调查、研究,介绍一种比较实用的农药污水治理方法。  相似文献   
6.
本研究制备了2种不同Ca2+含量的磁性锆铁改性膨润土(ZrFeBTs),即磁性锆铁改性原始膨润土(ZrFeRBT)和磁性锆铁改性钙预处理膨润土(ZrFeCaBT),并通过吸附实验考察了ZrFeRBT和ZrFeCaBT对水中磷酸盐的吸附特征,以确定Ca2+预处理对ZrFeBTs吸附水中磷酸盐的影响。结果发现,本研究所制备的ZrFeBTs包含Fe3O4和Zr,并且ZrFeCaBT中可交换Ca2+的含量明显高于ZrFeRBT。ZrFeBTs对水中磷酸盐吸附平衡实验数据可以很好地采用Langmuir等温吸附模型加以描述,动力学实验数据可以很好地采用准二级动力学模型和颗粒内扩散模型进行描述。根据Langmuir模型确定的ZrFeRBT和ZrFeCaBT对水中磷酸盐的最大单位吸附量(以磷计)分别为8.70mg·g-1和11.5mg·g-1。ZrFeBTs吸附水中磷酸盐的过程属于化学吸附。随着pH值的增加,ZrFeBTs对水中磷酸盐的吸附效果逐渐降低。当溶液共存Cl-、HCO3-、SO42-、NO3-、Na+、K+、Mg2+和Ca2+等阴阳离子时,ZrFeBTs对水中磷酸盐的吸附具有很好的选择性,并且溶液共存的Ca2+会极大地促进了ZrFeBTs对水中磷酸盐的吸附。采用Ca2+对膨润土进行预处理,极大地提高了ZrFeBTs对水中磷酸盐的吸附能力。  相似文献   
7.
为揭示城市不同污染水平河流有机质降解能力的差异,以合肥市十五里河、关镇河和板桥河为对象,选择速生杨(Populus tomentosa Carr.)凋落叶为实验材料,将其装入尼龙网袋并放置于河流水体底部.根据实验前后粗、细网眼尼龙网袋中凋落叶无灰干重,估算有机质降解速率,识别主要环境影响因素.结果表明:①水质状况较好的板桥河凋落叶有机质降解速率相对较低,而污染较为严重的十五里河、关镇河相对较高,变化范围分别为0.0133~0.026(均值为0.0193)、0.0207~0.098(均值为0.0418)和0.0305~0.0543(均值为0.0416) d-1.②2019年3条河流凋落叶有机质降解速率高低排序为:关镇河>十五里河>板桥河;2020年高低排序为:十五里河>关镇河>板桥河.③无论是粗眼网袋还是细眼网袋,每条河流两次实验之间凋落叶降解速率均呈极显著差异,而且3条河流凋落叶有机质降解速率之间也均表现出极显著差异性.④相较于沉积物指标,水质因素对凋落叶有机质降解速率的影响更为明显,特别是TN、NH4+-N、NO3--N、TP、SRP等都与降解速率存在重要或较重要的关系.  相似文献   
8.
采用批量吸附实验研究了高岭石和蒙脱石两种黏土矿物对Cu(Ⅱ)的吸附,利用各种吸附模型分析了两种黏土矿物对单一Cu(Ⅱ)溶液及Cu(Ⅱ)-Cr(Ⅵ)复合溶液中Cu(Ⅱ)的吸附机制,同时探讨了pH对两种黏土矿物Cu(Ⅱ)吸附的影响,旨在搞清土壤中重金属的环境化学行为并为土壤中重金属复合污染的修复提供依据.结果表明,高岭石和蒙脱石对单一及复合溶液中Cu(Ⅱ)的吸附是一个先快后慢的过程,120 min基本达到吸附平衡;二级动力学方程为描述两种黏土矿物Cu(Ⅱ)吸附的最佳动力学模型(R2>0.983),其次是内表面扩散模型和一级动力学模型.内表面扩散模型和Boyd模型拟合结果均说明发生在矿物边缘和表面的膜扩散作用是影响吸附的限速步骤.高岭石对Cu(Ⅱ)的吸附符合Freundlich方程(R2>0.971),说明高岭石表面有多种能量不一致的吸附位点,即为不均匀表面;而蒙脱石对Cu(Ⅱ)的吸附符合Langmuir方程(R2>0.983),说明其为单层分子吸附,即化学吸附.两种黏土矿物对Cu(Ⅱ)的吸附均随pH的升高呈先升高后下降的趋势,在pH=5.0时达到最大吸附量;且以Q蒙脱石>Q高岭石,Q单一Cu>Q Cu-Cr复合.Cr(Ⅵ)存在会降低Cu(Ⅱ)的吸附,以pH=6.0时Cr(Ⅵ)对Cu(Ⅱ)的吸附影响最小.  相似文献   
9.
含有多溴联苯(PBBs)和多溴二苯醚(PBDEs)的废旧家电,在拆解利用过程中这两类物质若释放到环境中会导致环境和职业卫生危害.通过检测湖北省5家定点拆解企业拆解下来的塑封料、含铅玻璃、废线路板(WPB)、填充物和废塑料5类拆解件及拆解车间废气、环境空气、降尘样、飞灰4个不同环境介质中的PBBs和PBDEs含量和组分,了解拆解零部件中该类污染物的存在现状,并评估作业场所的环境状况及作业工人的职业暴露风险.结果表明,拆解件中仅10.7%的废线路板中检出PBDEs,含量为9955~26519 mg·kg-1.各车间环境介质样品中的PBBs成分以PPB-209为主,PBBs最高含量为0.291 mg·g-1,PBDEs以BDE-209为主,PBDEs含量最高的是洗衣机拆解车间和电视机/电脑拆解车间.环境空气中PBDEs暴露量最高和最低的分别是洗衣机拆解车间和冰箱/空调拆解车间,应加强洗衣机拆解车间环境空气的改善和监控.  相似文献   
10.
通过底泥培养实验,并采用磷形态分级提取方法对底泥进行分析,研究了静止和水动力扰动这2种状态下锆改性沸石添加对不同深度处底泥中磷迁移和形态转化的影响.结果表明,无论是在静止还是在水动力扰动状态下,锆改性沸石添加均不仅降低了上覆水中溶解态活性磷(SRP)质量浓度,而且降低了不同深度处间隙水中SRP的质量浓度,并且还降低了底泥-上覆水界面SRP扩散通量.此外,当不存在和存在水动力扰动作用时,向表层底泥(0~10 mm)中添加锆改性沸石,不仅促使添加层中氧化还原敏感态磷(BD-P)和盐酸提取态磷(HCl~-P)向金属氧化物结合态磷(Na OH-rP)和残渣态磷(Res-P)极大转变,降低了添加层中潜在可移动态磷(Mobile-P)含量,而且还降低了添加层下方底泥(10~20 mm)中Mobile-P含量.与静止状态相比,水动力扰动状态下锆改性沸石添加对河道底泥磷迁移转化的影响规律存在一定的差异.水动力扰动虽然可以增强锆改性沸石添加对表层底泥间隙水中SRP的钝化效果,以及对底泥-上覆水界面SRP扩散通量的削减效应,但是却会略微降低锆改性沸石添加控制底泥中磷向上覆水体中释放的效率.表层底泥中潜在可移动态磷含量、不同深度处间隙水中SRP的质量浓度以及底泥-水界面SRP扩散通量的下降,对于锆改性沸石改良技术控制底泥磷向上覆水体释放至关重要.以上结果说明,无论是在静止还是在水动力扰动状态下,锆改性沸石添加均可以有效地控制河道底泥中磷向上覆水体的释放.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号