首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The overall objective of this paper was to evaluate five different technologies used for infectious medical waste treatment and select the optimum one by means of multicriteria analysis. Steam disinfection was selected as the optimum treatment technology, among others using incineration, microwave disinfection, chemical disinfection with sodium hypochlorite, and reverse polymerization with microwaves. The evaluation was based on four groups of criteria, specifically, environmental, economic, technical, and social criteria, using the analytic hierarchy process. Selection among four commercial systems using steam disinfection was not possible, because it required additional site-specific criteria, e.g., loading capacity and requirements of local regulations.

Implications: The paper can help health care facilities to select the system for infectious waste treatment that best fits their needs. It was concluded that steam disinfection was the optimum technology, using environmental, economic, technical, and social criteria.  相似文献   


2.
This study includes an application of the first two phases of a new three-phased decision-making structure that was developed to overcome the problems related to ecological safety and social justice in site selection applications. It was conducted on a current site selection problem related to the municipal solid waste disposal facilities in Kocaeli, the most industrialized region of Turkey. In order to assess the deficiencies of the legal site selection procedures related to ecological safety, two different decision tree modes were applied separately. The first mode (“Legislation”) concerns the current buffer zone applications given in the regulations, while the second one (“Proposed”) includes the applications of the new decision-making structure proposed in this study. Since it was assumed that the subjective tendencies of the decision makers on the weightings would have a significant effect on the final decision, these two modes were assessed by employing two different weighting models. The results were obtained from all of the scenarios related to selection of suitable sites with three different area requirements (15, 250, and 500 acres) for the solid wastes generated in the Kocaeli region. The results showed that the possible changes in the decision structure could cause significant differences in the final decision related to selection of the most suitable sites. The most highest and lowest differences were at the “Legislation” mode for 15 acres and 500 acres, respectively. Furthermore, the results obtained in the study showed that the possible differentiations in the criteria weightings could also cause significant differences in the suitability ranking. Therefore, to get a reliable final decision, a statistical assessment of these differentiations should be made.

Implications: The results showed that the possible changes in the decision structure could cause significant differences in the final decision related to selection of the most suitable sites. Furthermore, the results obtained in the study showed that the possible differentiations in the criteria weightings could also cause significant differences in the suitability ranking. Therefore, to get a reliable final decision, a statistical assessment of these differentiations should be made.  相似文献   

3.
In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments.

In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries.

Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models.

Natural “interventions” - reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems – demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g., carbonaceous species, may cause harm, aiding interpretation of epidemiological studies.

Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer, and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the U.S. EPA rubric for judging possible causality of PM2.5. mass concentrations, be used to assess which PM2.5. species are most harmful to public health.

Implications: Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. “Natural intervention” studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.

A list of acronyms will be found at the end of the article.  相似文献   


4.
Most existing signal timing models are aimed to minimize the total delay and stops at intersections, without considering environmental factors. This paper analyzes the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. First, considering the different operating modes of cruising, acceleration, deceleration, and idling, field data of emissions and Global Positioning System (GPS) are collected to estimate emission rates for heavy-duty and light-duty vehicles. Second, multiobjective signal timing optimization model is established based on a genetic algorithm to minimize delay, stops, and emissions. Finally, a case study is conducted in Beijing. Nine scenarios are designed considering different weights of emission and traffic efficiency. The results compared with those using Highway Capacity Manual (HCM) 2010 show that signal timing optimized by the model proposed in this paper can decrease vehicles delay and emissions more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.

Implications: Vehicle emissions are heavily at signal intersections in urban area. The multiobjective signal timing optimization model is proposed considering the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. The results indicate that signal timing optimized by the model proposed in this paper can decrease vehicle emissions and delays more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.  相似文献   


5.
This study was meant to determine environmental aspects of hospital waste management scenarios using a life cycle analysis approach. The survey for this study was conducted at the largest hospital in a major city of Pakistan. The hospital was thoroughly analyzed from November 2014 to January 2015 to quantify its wastes by category. The functional unit of the study was selected as 1 tonne of disposable solid hospital waste. System boundaries included transportation of hospital solid waste and its treatment and disposal by landfilling, incineration, composting, and material recycling methods. These methods were evaluated based on their greenhouse gas emissions. Landfilling and incineration turned out to be the worst final disposal alternatives, whereas composting and material recovery displayed savings in emissions. An integrated system (composting, incineration, and material recycling) was found as the best solution among the evaluated scenarios. This study can be used by policymakers for the formulation of an integrated hospital waste management plan.

Implications: This study deals with environmental aspects of hospital waste management scenarios. It is an increasing area of concern in many developing and resource-constrained countries of the world. The life cycle analysis (LCA) approach is a useful tool for estimation of greenhouse gas emissions from different waste management activities. There is a shortage of information in existing literature regarding LCA of hospital wastes. To the best knowledge of the authors this work is the first attempt at quantifying the environmental footprint of hospital waste in Pakistan.  相似文献   


6.
A new method has been developed for a direct and remote measurement of industrial flare combustion efficiency (CE). The method is based on a unique hyper-spectral or multi-spectral Infrared (IR) imager which provides a high frame rate, high spectral selectivity and high spatial resolution. The method can be deployed for short-term flare studies or for permanent installation providing real-time continuous flare CE monitoring.

In addition to the measurement of CE, the method also provides a measurement for level of smoke in the flare flame regardless of day or night. The measurements of both CE and smoke level provide the flare operator with a real-time tool to achieve “incipient smoke point” and optimize flare performance.

The feasibility of this method was first demonstrated in a bench scale test. The method was recently tested on full scale flares along with extractive sampling methods to validate the method. The full scale test included three types of flares – steam assisted, air assisted, and pressure assisted. Thirty-nine test runs were performed covering a CE range of approximately 60-100%. The results from the new method showed a strong agreement with the extractive methods (r2=0.9856 and average difference in CE measurement=0.5%).

Implications: Because industrial flares are operated in the open atmosphere, direct measurement of flare combustion efficiency (CE) has been a long-standing technological challenge. Currently flare operators do not have feedback in terms of flare CE and smoke level, and it is extremely difficult for them to optimize flare performance and reduce emissions. The new method reported in this paper could provide flare operators with real-time data for CE and smoke level so that flare operations can be optimized. In light of EPA’s focus on flare emissions and its new rules to reduce emissions from flares, this policy-relevant development in flare CE monitoring is brought to the attention of both the regulating and regulated communities.  相似文献   


7.
This paper explores the application of corona plasma technology as a tool in treatment of volatile organic compounds (VOCs). The review introduces the principle of corona discharge and describes the characteristics of plasma, especially of various corona plasma reactors. By summarizing the main features of such reactors, this paper provides a brief background to different power sources and reactor configurations and their application to VOC treatment design. Considering chlorinated compounds, benzene series and sulfur compounds, this paper reveals the probable mechanism of corona plasma in VOC degradation. Additionally, the effects of numerous technical parameters – such as reactor structure, shape and materials of electrodes, and humidity – are analyzed comprehensively. Product distribution, energy efficiency and economic benefits are invoked as factors to evaluate the performance of VOC degradation. Finally, the practical application of corona plasma and its advantages are briefly introduced. The review aims to illustrate the enormous potential of corona plasma technology in the treatment of VOCs, and identifies future directions.

Implications: This paper comprehensively describes the principle, characteristics, research progress and engineering application examples of the degradation of volatile organics by corona discharge plasma, to provide a theoretical basis for the industrial application of this process.  相似文献   


8.
Signalized intersections have been identified as vehicle emission hotspots, where drivers decelerate, idle, and accelerate their vehicles in response to signal changes. Advanced traffic signal status warning systems (ATSSWSs) can be applied to reduce traffic emissions at intersections by mitigating unnecessary braking and acceleration. In this study, two types of ATSSWSs, variable message sign (VMS) based and vehicle-to-infrastructure (V2I) based, were designed, and their environmental effectiveness was evaluated through driving simulator-based experiments. Three scenarios were designed and tested: (1) baseline without an ATSSWS, (2) with the VMS-based ATSSWS, and (3) with the V2I-based ATSSWS. The Motor Vehicle Emission Simulator model was used to evaluate and compare the environmental effectiveness of these two types of ATSSWSs. The results indicate that the proposed ATSSWSs can reduce traffic emissions at signalized intersections. In particular, the V2I-based ATSSWS can substantially reduce CO2, NOx, CO, and HC emissions. The results will help transportation practitioners with implementing advanced driver information systems and decision making on emission reduction policies.

Implications: Signalized intersection has been identified as one of hottest spots for vehicle emissions where signal control causes vehicles to frequently decelerate, idle, and accelerate. Advanced Traffic Signal Status Warning Systems (ATSSWS) can be applied to reduce traffic emission at intersections by decreasing vehicles’ unnecessary brakes and accelerations. The results of this study will assist transportation practitioners in implementing advanced driver information systems and making decisions on emission reduction policies.  相似文献   


9.
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials.

This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas.

The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW.

Implications: Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.  相似文献   


10.
Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland (“Reykjavik haze”), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events.

Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured.

Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution.

Implications: Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and provides a unique perspective of the dust aerosol production from natural sources in the sub-Arctic Iceland. The amounts are staggering, and with this paper, it is clear that Icelandic dust sources need to be considered among major global dust sources. This paper presents the dust events directly affecting the air quality in the Arctic region.  相似文献   


11.
This study aimed to investigate the effects on the environment of small clinics solid waste management by applying a life cycle analysis approach. Samples were collected from 371 private clinics situated in densely populated areas of Hyderabad, Pakistan. The solid waste from surveyed clinics was categorically quantified on daily basis for 30 consecutive days. The functional unit for waste was defined as 1 tonne. System limitations were defined as landfilling, incineration, composting, material recovery, and transportation of solid waste. The treatment and disposal methods were assessed according to their greenhouse gas emission rate. For the evaluation, three different scenarios were designed. The second scenario resulted in the highest emission value of 1491.78 kg CO2 eq/tonne of solid waste due to mixed waste incineration, whereas the first scenario could not offer any saving because of uncovered landfilling and 67.5% higher transport fuel consumption than the proposed network. The proposed third scenario was found to be a better solution for urban clinics solid waste management, as it resulted in savings of 951.38 kg CO2 eq/tonne of solid waste. This integrated design is practicable by resource-constrained economy. This system consists of composting, material recovery, and incineration of hazardous waste. The proposed system also includes a feasible transportation method for urban area collection networks. The findings of the present study can play a vital role in documenting evidence and for policymakers to plan the solid waste management of clinics, as previously no studies have been conducted on this particular case.

Implications: This study aims to highlight the impact of small clinics solid waste management scenarios on the environment in a developing country’s urban area. Life cycle analysis is used for comparison of greenhouse gase emission from different scenarios, including the purposed integrated method. Small clinics play a very important role in health care, and their waste management is a very serious issue; however, there are no previous studies on this particular case to the best knowledge of the authors. This study can be considered as forerunner effort to quantify the environmental footprint of small clinics solid waste in urban areas of a developing country.  相似文献   


12.
The industrial development in Algeria has made a worrying situation for all socioeconomic stakeholders. Indeed, this economic growth is marked in recent years by the establishment of factories and industrial plants that discharge liquid waste in marine shorelines. These releases could destabilize the environmental balance in the coming years, hence the need to support the processing of all sources of pollution. Remediation of such discharges requires several steps of identifying the various pollutants to their treatments. Therefore, the authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial.

Implications: The authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial.  相似文献   


13.
Chemical emissions from research and development (R&D) activities are difficult to estimate because of the large number of chemicals used and the potential for continual changes in processes. In this case study, stack measurements taken from R&D facilities at Pacific Northwest National Laboratory (PNNL) were examined, including extreme worst-case emissions estimates and alternate analyses using a Monte Carlo method that takes into account the full distribution of sampling results. The objective of this study was to develop techniques to estimate emissions from stack measurement data that take into account a high degree of variability in the actual emissions. The results from these analyses were then compared to emissions estimated from chemical inventories. Results showed that downwind ambient air concentrations calculated from the stack measurement data were below acceptable source impact levels (ASILs) for almost all compounds, even under extreme worst-case analyses. However, for compounds with averaging periods of a year, the unrealistic but simplifying extreme worst-case analysis often resulted in calculated emissions that were above the lower level regulatory criteria used to determine modeling requirements or to define trivial releases. Compounds with 24-hr averaging periods were nearly all several orders of magnitude below all, including the trivial release, criteria. The alternate analysis supplied a more realistic basis of comparison and an ability to explore effects under different operational modes.

Implications:

Air emissions from research operations are difficult to estimate because of the changing nature of research processes and the small quantity and wide variety of chemicals used. Stack measurements can be used to verify compliance with applicable regulatory criteria. This study shows that while extreme worst-case assumptions can be used for a relatively simple initial comparison, methods that take into account the full range of measurement data are needed to provide a more realistic estimate of emissions for comparison to regulatory criteria, particularly those criteria that define trivial levels of environmental concern.  相似文献   


14.
In May 2018, the University of Denver repeated on-road optical remote sensing measurements at two locations in Lynwood, CA. Lynwood area vehicle tailpipe emissions were first surveyed in 1989 and 1991 because the area suffered from a large number of carbon monoxide (CO) air quality violations. These new measurements allow for the estimation of fuel-specific CO and total hydrocarbon (HC) emissions reductions, changes in the longevity of emission-control components, and the prevalence of high emitters in the current fleet. Since 1989 CO emissions decreased approximately factors of 10 (120 ± 8 to 12.3 ± 0.2 gCO/kg of fuel) and 20 (210 ± 8 to 10.4 ± 0.4 gCO/kg of fuel) at our I-710/Imperial Highway and Long Beach Blvd. sites, respectively. These reductions are also reflected in the local ambient air measurements. Tailpipe HC emissions have decreased by a factor of 25 (50 ± 4 to 2.1 ± 0.3 gHC/kg of fuel) since 1991 at the Long Beach Blvd. location. The decreases are so dramatic that the vast majority of vehicles now have HC measurements that are indistinguishable from zero. The decreases have increased the skewedness of the emissions distribution with the 99th percentile now responsible for more than 37% (CO) and 28% (HC) of the totals. Ammonia emissions collected in 2018 at both Lynwood locations peak with 20-year-old vehicles (1998 models), indicating long lifetimes for catalytic converters.

In 1989 and 1991, the on-road Lynwood fleets had significantly higher emissions than fleets observed in other locations within the South Coast Air Basin. The 2018 fleets now have means and emissions by model year that are consistent with those observed at other sites in Los Angeles and the U.S. This indicates that modern vehicle combustion management and after-treatment systems are achieving their goals regardless of community income levels.

Implications: Recent on-road vehicle emission measurements at two locations in the Lynwood, CA area, first visited in 1989, found significant fuel specific CO and HC emission reductions. CO emissions have decreased by a factor of 10 and 20 at each location and HC emissions have declined by a factor of 25. This has increased the skewedness in both species emissions distribution. The 2018 fleets have means and emissions by model year that are now consistent with those observed at other U.S. sites indicating that modern vehicle emissions control advancements are achieving their goals regardless of community income levels.  相似文献   


15.
Limitations of the toxicity characteristic leaching procedure (TCLP) for simulating pollutant leaching from wastes disposed of in full-scale landfills are well understood in the waste management profession; the TCLP solution has a lower pH and greater organic acid content than typical landfill leachate. The TCLP serves its intended regulatory objective, however, as long as a conservative estimate of leaching is provided. Here, we examine TCLP’s ability to represent worst-case leaching conditions for monofilled municipal solid waste incineration (MSWI) ash. A critical examination of TCLP’s applicability to MSWI ash is especially relevant, as ash management at MSWI facilities often centers on passing TCLP, regardless of environmental risk posed by the ash or its recyclability. Multiple batch leaching tests were conducted on different MSWI ash streams: mixed ash, fly ash, and different size fractions of bottom ash. Batch-test results were compared with leachate simulating MSWI ash monofills. The TCLP did not consistently provide the most conservative estimate of leaching, supporting the need to consider alternative methodologies in future regulatory development.

Implications: This paper analyzes the existing hazardous waste regulatory testing requirement for municipal solid waste incinerator (MSWI) ash management to evaluate whether the TCLP serves its intended purpose in providing the most conservative estimate of landfilled MSWI ash. The results will serve as guidance and motivation for policy makers and the regulatory community to reevaluate the TCLP’s application for characterizing MSWI ash leaching in certain disposal scenarios and could promote consideration of alternative testing procedures based upon results of this study. This study serves to promote representative and accurate quantification of leaching risk from MSWI ash.  相似文献   


16.
The Motor Vehicle Emission Simulator (MOVES) quantifies emissions as a function of vehicle modal activities. Hence, the vehicle operating mode distribution is the most vital input for running MOVES at the project level. The preparation of operating mode distributions requires significant efforts with respect to data collection and processing. This study is to develop operating mode distributions for both freeway and arterial facilities under different traffic conditions. For this purpose, in this study, we (1) collected/processed geographic information system (GIS) data, (2) developed a model of CO2 emissions and congestion from observations, (3) implemented the model to evaluate potential emission changes from a hypothetical roadway accident scenario. This study presents a framework by which practitioners can assess emission levels in the development of different strategies for traffic management and congestion mitigation.

Implications: This paper prepared the primary input, that is, the operating mode ID distribution, required for running MOVES and developed models for estimating emissions for different types of roadways under different congestion levels. The results of this study will provide transportation planners or environmental analysts with the methods for qualitatively assessing the air quality impacts of different transportation operation and demand management strategies.  相似文献   


17.
Passive samplers are used in air quality monitoring for many years to compete in terms of being economical with continuous measurement systems. In this study, different amounts of single-wall carbon nanotubes (SWCNTs) were added in the impregnation solution of the filters of passive samplers and the effect on the absorption of ozone studied. The results of the measurement of ozone with varying amounts of SWCNTs added to the impregnation solution of the filters of the passive samplers were compared with the results of the continuous ozone measurement system (CS). Measurements were performed for 7 days and 14 days at two different exposure times. The increase of the amount of SWCNTs on the filters of the passive samplers, however, did not have an effect on the measurement of ozone. The measurement results of the passive samplers of the 14-day exposure periods, alternating with the 7-day exposure periods, were lower considerably than the results of the 7-day exposure.

Implications: The accuracy and the use of passive samplers in SWCNTs are expected to provide high measurement results. Observing the effect of the change in the amount of diffusion of pollutants held in the SWCNT is also one of the expected implications.  相似文献   


18.
Road environments significantly affect in cabin concentration of particulate matter (PM). This study conducted measurements of in-vehicle and on-road concentrations of PM10, PM2.5, PM1, and particle number (PN) in size of 0.02–1 µm, under six ventilation settings in different urban road environments (tunnels, surface roads and elevated roads). Linear regression was then used to analyze the contributions of multiple predictor variables (including on-road concentrations, temperature, relative humidity, time of day, and ventilation settings) to measured variations. On-road measurements of PM2.5, PM1, and PN concentrations from the open surface roads were 5.5%, 3.7%, and 16% lower, respectively, than those measured in tunnels, but 7.6%, 7.1% and 24% higher, respectively, than those on elevated roads. The highest on-road PM10 concentration was observed on surface roads. The time series pattern of in-vehicle particle concentrations closely tracked the on-road concentrations outside of the car and exhibited a smoother profile. Irrespective of road environment, the average I/O ratio of particles was found to be the lowest when air conditioning was on with internal recirculation, the highest purification efficiency via ventilation was obtained by switching on external air recirculation and air conditioning. Statistical models showed that on-road concentration, temperature, and ventilation setting are common factors of significance that explained 58%-80%, 64%-97%, and 87%-98% of the variations in in-vehicle PM concentrations on surface roads, on elevated roads, and in tunnels, respectively.

Implications: Inside vehicles, both driver and passengers will be exposed to elevated particle concentrations. However, for in-vehicle particles, there has been no comprehensive comparative study of the three-dimensional traffic environment including tunnels surface roads and elevated roads. This study focuses on the analysis of the trends and main influencing factors of particle concentrations in different road environments. The results can provide suggestions for the driver's behavior, and provide data support for the environmental protection department to develop pollutant concentration limits within the vehicle.  相似文献   


19.
Polychlorinated biphenyls (PCBs) were widely used in industrial production due to the unique physical and chemical properties. As a kind of persistent organic pollutants, the PCBs would lead to environment pollution and cause serious problems for human health. Thus, they have been banned since the 1980s due to the environment pollution in the past years. Indoor air is the most direct and important environment medium to human beings; thus, the PCBs pollution research in indoor air is important for the protection of human health. This paper introduces the industrial application and potential harm of PCBs, summarizes the sampling, extracting, and analytical methods of environment monitoring, and compares the indoor air levels of urban areas with those of industrial areas in different countries according to various reports. This paper can provide a basic summary for PCBs pollution control in the indoor air environment.

Implications: The review of PCBs pollution in indoor air in China is still limited. In this paper, we introduce the industrial application and potential harm of PCBs, summarize the sampling, extracting, and analytical methods of environment monitoring, and compare the indoor air levels of urban areas with industrial areas in different countries according to various reports.  相似文献   


20.
In this paper, a multiobjective mixed-integer piecewise nonlinear programming model (MOMIPNLP) is built to formulate the management problem of urban mining system, where the decision variables are associated with buy-back pricing, choices of sites, transportation planning, and adjustment of production capacity. Different from the existing approaches, the social negative effect, generated from structural optimization of the recycling system, is minimized in our model, as well as the total recycling profit and utility from environmental improvement are jointly maximized. For solving the problem, the MOMIPNLP model is first transformed into an ordinary mixed-integer nonlinear programming model by variable substitution such that the piecewise feature of the model is removed. Then, based on technique of orthogonal design, a hybrid heuristic algorithm is developed to find an approximate Pareto-optimal solution, where genetic algorithm is used to optimize the structure of search neighborhood, and both local branching algorithm and relaxation-induced neighborhood search algorithm are employed to cut the searching branches and reduce the number of variables in each branch. Numerical experiments indicate that this algorithm spends less CPU (central processing unit) time in solving large-scale regional urban mining management problems, especially in comparison with the similar ones available in literature. By case study and sensitivity analysis, a number of practical managerial implications are revealed from the model.

Implications: Since the metal stocks in society are reliable overground mineral sources, urban mining has been paid great attention as emerging strategic resources in an era of resource shortage. By mathematical modeling and development of efficient algorithms, this paper provides decision makers with useful suggestions on the optimal design of recycling system in urban mining. For example, this paper can answer how to encourage enterprises to join the recycling activities by government’s support and subsidies, whether the existing recycling system can meet the developmental requirements or not, and what is a reasonable adjustment of production capacity.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号