首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study reports on the application of modified groundnut shell as a new, easily prepared, and stable sorbent for the extraction of trace amount of Cr(III) in aqueous solution. 2-Hydroxybenzaldiminoglycine was immobilized on groundnut shells in alkaline medium and then used as a solid phase for the column preconcentration of Cr(III). The elution was carried out with 3 mL of 2 mol?L?1 HCl. The amount of eluted Cr(III) was determined by spectrophotometry using cefaclor as a complexing reagent and by flame atomic absorption spectrometry (FAAS). Different experimental variables such as pH, amount of solid sorbent, volume and concentration of eluent, sample and eluent flow rate, and interference of other metal ions on the retention of Cr(III) were studied. Under the optimized conditions, the calibration curves were found to be linear over the concentration range of 13–104 and 10–75 μg?L?1 with a detection limit of 3.64 and 1.24 μg?L?1 for spectrophotometric method and FAAS, respectively. An enrichment factor of 200 and RSD of ±1.19–1.49 % for five successive determinations of 25 μg?L?1 were achieved. The column preconcentration was successfully applied to the analysis of tap water and underground water samples.  相似文献   

2.
A simple and sensitive solid phase extraction (SPE) method on multiwalled carbon nanotubes (MWCNTs) is presented for the determination of cadmium, lead, nickel, copper, and zinc at trace levels combined with flame atomic absorption spectrometry. The effects of parameters like pH, sample volume, sample and eluent flow rates, eluent concentration, and volume and type of eluent on the recovery of trace elements was examined. The metals retained on the nanotube at pH 6.5 as α-benzoin oxime complexes were eluted by 10 mL 2 M HNO3 in acetone. The influence of matrix ions on the developed method was also evaluated. The preconcentration factor of the method was found to be 50. The detection limits for Cd(II), Pb(II), Ni(II), Cu(II), and Zn(II) were found as 1.7, 5.5, 6.0, 2.3, and 2.4 μg L?1, respectively. To test the accuracy of the method, the method was applied to TMDA-70 fortified lake water and Spinach 1570A standard reference materials. Addition recovery studies were applied to tap water and cracked wheat samples, and determination of the analyte elements was carried out in some food samples with good results.  相似文献   

3.
In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L-1 HNO3 and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L?1 and 3.91 μg L?1, respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.  相似文献   

4.
Nascent Amberlite XAD-4 has been used as the polymeric support for the synthesis of a stable extractor of metal ions, by incorporating phthalic acid through azo bridging. Elemental analyses and infra-red spectral and thermal studies were carried out for its characterization. The water regain value and hydrogen ion capacity were found to be 12.50 and 5.75 mmol g?1, respectively. The optimum pH range for the maximum sorption of Ni(II), Mn(II), Cu(II), Zn(II), Cd(II), Cr(III), and Co(II) was observed at pH 5.5–8.0 with the corresponding half-loading time (t 1/2) of 9, 5, 9, 9, 3, 9, and 5 min, respectively. The preconcentration factor for Ni(II), Mn(II), Cu(II), Zn(II), Cd(II), Cr(III), and Co(II) are 190, 190, 190, 180, 180, 160, and 160, with the corresponding limit of preconcentration in the range of 5.25–6.25 μg L?1. The detection limits, for flame atomic absorption spectrophotometry, were found to be 0.62, 0.60, 0.65, 0.75, 0.72, 0.84, and 0.85 μg L?1, respectively. Method has been successfully applied to the analysis of water samples, multivitamin formulations, infant food substitutes, hydrogenated oil, and fishes.  相似文献   

5.
The aim of the present work is the assessment of a new sorbent, prepared using silica gel coated with a pyrimidine derivative (allyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate), for extraction and preconcentration trace amount of lead from different samples prior to determination by flame atomic absorption spectrometry. Common coexisting ions did not interfere with the separation and determination of lead at pH?6, so that lead ion completely adsorbed on the column. The limit of detection based on three times the standard deviation of the blank was found to be 0.53 ng?mL?1 in original solution. Obtained sorption capacity for 1 g sorbent was 5.0 mg Pb. The linearity was maintained in the concentration range of 0.1–30.0 ng?mL?1 for the concentrated solution. Eight replicate determinations of 2.0 μg?mL?1 of lead in the final solution gave relative standard deviation of ±2.6 %. The proposed method was successfully applied to the determination trace amounts of lead in the environmental samples such as carrot, rice, zardchoobe, and real water samples.  相似文献   

6.
In this work, spectrophotometer was used as a detector for the determination of uranium from water, biological, and ore samples with a flow injection system coupled with solid phase extraction. In order to promote the online preconcentration of uranium, a minicolumn packed with XAD-4 resin impregnated with nalidixic acid was utilized. The system operation was based on U(VI) ion retention at pH 6 in the minicolumn at flow rate of 15.2 mL min?1. The uranium complex was removed from the resin by 0.1 mol dm?3 HCl at flow rate of 3.2 mL min?1 and was mixed with arsenazo III solution (0.05 % solution in 0.1 mol dm?3 HCl, 3.2 mL min?1) and driven to flow through cell of spectrophotometer where its absorbance was measured at 651 nm. The influence of chemical (pH and HCl (as eluent and reagent medium) concentration) and flow (sample and eluent flow rate and preconcentration time) parameters that could affect the performance of the system as well as the possible interferents was investigated. At the optimum conditions for 60 s preconcentration time (15.2 mL of sample volume), the method presented a detection limit of 1.1 μg L?1, a relative standard deviation (RSD) of 0.8 % at 100 μg L?1, enrichment factor of 30, and a sample throughput of 42 h?1, whereas for 300 s of the preconcentration time (76 mL of sample volume), a detection limit of 0.22 μg L?1, a RSD of 1.32 % at 10 μg L?1, enrichment factor of 150, and a sampling frequency of 11 h?1 were reported.  相似文献   

7.
This work proposes the quantification of Cr (VI) ions in natural waters in trace level, using activated alumina (Al2O3) as preconcentration support, controlled in-line dissolution of the solidified chromophore diphenylcarbazide after heat treatment and spectrophotometric detection. The manifold ensures high sensitivity of analytical response, good repeatability, and stability. In this work, optimization of experimental conditions of a flow injection system was chosen as the parameters for greater sensitivity and better selectivity. The selected optimized conditions were 0.30 mol L?1 for H2SO4 concentration, system flow rate as 0.40 mL min?1, sample injection volume of 192.50 μL, 2 min for preconcentration time, and 0.10 mol L?1 for eluent concentration. The analytical curves obtained for real sample analysis show linear range from 0.192 to 0.961 μM, linear correlation coefficient R?=?0.9997 and LOD?=?0.024 μM. The preconcentration factor of about four times was obtained through the passage of 800 μL of a standard solution containing 0.961 μM of Cr (VI) through mini-column of preconcentration followed by elution at 192.5 μL of NH4OH 0.1 mol L?1 solution. The solid chromogenic reagent presented high durability (weeks in daily use with mass of 0.0993 g) and good reproducibility in analytical signal. The reactivation of the mini-column of alumina should be executed after ten injections of eluent, using 800 μL of HCl 0.02 mol L?1 solution in flow through the same. Each cycle of injection and elution of the sample takes about 5 min on the proposed terms. Despite the length of each cycle still be high, low concentrations can be detected using a technique of relatively low cost. This is due in part, the association dissolution of the chromogenic reagent directly in the line and the preconcentration step. Another important factor is the economy of reagent chromogenic, low generation of reject contributing to better quality of the environment, and the high potential for applications to work in field.  相似文献   

8.
New solid-phase extractor (MWCNTs-5-ASA) was synthesized via covalent immobilization of 5-aminsalicylic acid onto multi-walled carbon nanotubes (MWCNs). The success of the functionalization process was confirmed using Fourier transform infrared spectroscopy, scanning electron microscope, and surface coverage determination. Batch experiments were conducted as a function of pH to explore MWCNTs-5-ASA efficiency to extract several metal ions viz., Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II). It was found that Pb(II) exhibits the highest extraction percentage with maximum adsorption capacity 32.75 mg g?1. Its binding performance was well fitted with Langmuir sorption isotherm. On the other hand, the selective separation and preconcentration of trace Pb(II) under dynamic conditions prior to determination by inductively coupled plasma-optical emission spectrometry was investigated under different parameters. These included the rate of flow and volume of sample solution, in addition to the type of the eluate, its volume and concentration. The effect of a variety of foreign ions on the recovery percentage was also evaluated. Trace Pb(II) ions present in 500 mL aqueous solution adjusted to pH 4.0 were retained on 50 mg of MWCNTs-5-ASA and completely eluted using 4.0 mL of 2 M HNO3. The limit of detection and the precision of the method were 0.25 ng mL?1 and 2.8 %, respectively (N?=?5). This methodology has been applied for the determination of Pb(II) in water samples with good results.  相似文献   

9.
We are introducing graphene oxide modified with amine groups as a new solid phase for extraction of heavy metal ions including cadmium(II), copper(II), nickel(II), zinc(II), and lead(II). Effects of pH value, flow rates, type, concentration, and volume of the eluent, breakthrough volume, and the effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >97 %, the limit of detections are 0.03, 0.05, 0.2, 0.1, and 1 μg L?1 for the ions of cadmium, copper, nickel, zinc, and lead, respectively, and the adsorption capacities for these ions are 178, 142, 110, 125, and 210 mg g?1. The amino-functionalized graphene oxide was characterized by thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The proposed method was successfully applied in the analysis of environmental water and food samples. Good spiked recoveries over the range of 95.8–100.0 % were obtained. This work not only proposes a useful method for sample preconcentration but also reveals the great potential of modified graphene as an excellent sorbent material in analytical processes.  相似文献   

10.
A novel and robust method for the simultaneous determination of lead, cadmium, arsenic, and nickel in atmospheric particulate matter by multi-element electrothermal atomic absorption spectrometry was developed, using zirconium–iridium coating as permanent modifier (140 μg Zr and 4 μg Ir). After 300 atomization cycles, it was necessary to add 2 μg of Ir. Due to the varying concentrations of Pb in atmospheric particulate matter, lead was monitored at two wavelengths, at the less sensitive line of 261.4 nm for high concentration samples (>20 μg?L?1) or at 283.3 nm for the low concentration samples. Matrix-matched calibration had to be performed for quantitative recoveries (96–102 %). Following this approach, the four elements were determined in atmospheric particulate matter samples from an industrial area near the city of Athens in two different time periods (cold–warm) with limits of detection of 5.5 ng?m?3 for Pb at 261.4 nm and 0.29 ng?m?3 at 283.3 nm, 0.019 ng?m?3 for Cd, 0.14 ng?m?3 for As, and 0.22 ng?m?3 for Ni. Lead, Cd, and As levels were very low, whereas Ni content was at comparable levels with other areas worldwide.  相似文献   

11.
A simple, rapid, and efficient dispersive liquid–liquid microextraction method, followed by UV–Vis spectrophotometry was developed for the preconcentration and determination of Pd ions in water samples. Pd ions react with α-furildioxime (chelating agent) to form a hydrophobic complex. Various parameters were altered to study and optimize their effects on the extraction efficiency, such as pH, ligand concentration, the type and volume of extraction and dispersive solvents, extraction time, and salt concentration. Under optimized conditions, the method exhibited an enrichment factor (C org/C aq) of 25 and recovery more than 98 % within a very short extraction time. The linearity of the method ranged from 10 to 200 μg?L?1. The limit of detection was 1.1 μg?L?1. The relative standard deviation for the concentration of 100 μg?L?1 of Pd was 2.3 % (n?=?10). Finally, the developed method was successfully applied to the extraction and determination of Pd in tap, river, mineral, and sea water samples.  相似文献   

12.
Quercetin (3,3,4,5,7-pentahydroxyflavone) chemically bonded through pyran rearrangement on modified controlled pore silica glass (QCPSG) with a capacity 0.213 mmol/g was used for solid phase extraction of some toxic metal and metalloid ions. The newly designed QCPSG quantitatively sorbs As(V), Cd(II), Hg(II), and Pb(II) at the pH range 7.5–8.5 after 10 min of stirring. HCl (1 mol L???1) instantaneously elutes all the metal ions. The sorption capacity of the ion collector is 0.42, 0.46, 0.53, and 0.49 mmol g???1 for As(V), Cd(II), Hg(II), and Pb(II), respectively, whereas the preconcentration factor is 200. The effect of NaCl, Na2SO4, NaF, NaBr, Na3PO4, and other interfering salts on the sorption of metal ions (50 μg L???1) was reported. Analytical detection limits of As(V), Cd(II), Hg(II), and Pb(II) were 4.18, 2.44, 15.86, and 25.00 pg mL???1, respectively. QCPSG was used in the separation of the investigated metal ions from some natural water samples collected from diverse origins followed by determination by inductively coupled plasma–mass spectrometry. The data were compared with those obtained by the standard methods of determination using atomic absorption (hydride generation, HGAAS and after solvent extraction with ammonium pyrolidine dithiocarbamate/methyl isobutyl ketone). The suggested solid phase extraction method was found accurate with no random error.  相似文献   

13.
A procedure was developed for the determination of Cd, Cu, Zn, Co, Ni, Mn, Pb and Mo in water samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) after preconcentration on a morpholine dithiocarbamate (mor-DTC) supported by bagasse (Saccharam aphisinaram). The sorbed elements were subsequently eluted with 4,M HNO3 and the acid eluates were analysed by ICP–AES. The influence of various parameters such as pH, flow rate of sample, eluent concentration, volume of the sample and volume of eluent were investigated to enhance the sensitivity of the present method. A 20,mL disposable syringe served as preconcentration column. Under the optimal conditions Cd, Cu, Zn, Co, Ni, Mn, Pb and Mo in aqueous sample was concentrated about 100-fold. The sorption recoveries of elements were higher than 99.6%. The method is also applied for the analysis of natural and spiked water samples.  相似文献   

14.
We assessed the effects of seasonal dynamics on the physico-chemical qualities and heavy metals concentrations of the Umgeni and Umdloti Rivers in Durban, South Africa. Water samples were taken from nine different sampling points and analysed for the following parameters; temperature, pH, turbidity, electrical conductivity (EC), biological oxygen demand (BOD5), chemical oxygen demand (COD), phosphate (PO4 2?), nitrate (NO3 2?), ammonium (NH4 +), sulphate (SO4 2?), lead (Pb2+), mercury (Hg2+), cadmium (Cd2+), aluminium (Al3+), and copper (Cu2+) using standard methods. The data showed variations it terms of the seasonal fluctuations and sampling regime as follows: temperature 12–26.5 °C; pH 5.96–8.45; turbidity 0.53–18.8 NTU; EC 15.8–5180 mS m?1; BOD5 0.60–7.32 mg L?1; COD 10.5–72.9 mg L?1; PO4 2??<?500–2,460 μg L?1; NO3 2? <0.05–4.21 mg L?1; NH4 +?<?0.5–1.22 mg L?1; SO4 2? 3.90–2,762 mg L?1; Pb2+ 0.023–0.135 mg L?1; Hg2+ 0.0122–0.1231 mg L?1 Cd2+ 0.068–0.416 mg L?1; Al3+ 0.037–1.875 mg L?1, and Cu2+0.006–0.144 mg L?1. The concentrations of most of the investigated parameters exceeded the recommended limit of the South African Guidelines and World Health Organization tolerance limits for freshwater quality. We conclude that these water bodies are potentially hazardous to public health and this highlights the need for implementation of improved management strategies of these river catchments for continued sustainability.  相似文献   

15.
This paper highlights the levels of anions (nitrate, nitrite, sulfate, bromide, chloride, and fluoride) and cations (potassium, sodium, magnesium, and calcium) in selected springs and groundwater sources in the urban-west region of Zanzibar Island. The levels of total dissolved solids (TDS) and sodium adsorption ratio (SAR) were also studied. Thirty water samples were collected in December 2012 from various types of water sources, which included closed hand-dug wells (CHDW), open hand-dug wells (OHDW), springwater (SW), public bore wells (PBW), and bore wells owned by private individuals (BWP), and analyzed after filtration and sometimes dilution. The cations were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). The anions were analyzed by chemically suppressed ion chromatography (IC). The ranges of the levels of the investigated parameters were as follows: Na 13.68–3,656 mg L?1, K 2.66–583 mg L?1, Mg 0.63–131.10 mg L?1, Ca 16.79–189.9 mg L?1, Cl? 8.61–4,340.97 mg L?1, F? 0–1.02 mg L?1, Br? 0–10.88 mg L?1, NO3 ? 0.18–342.4 mg L?1, NO2 ? 0–1.39, SO4 2? 4.43–534.02 mg L?1, TDS 7–6,380 mg L?1, and SAR 0.63–50. Except fluoride, most of the studied parameters in the water samples had concentrations beyond the permissible limits of the World Health Organization (WHO). The elevated concentrations are a result of seepage of contaminated water from on-site septic tanks, pit latrines, landfill leachates, fertilizer applications, and domestic effluents. These results should alert domestic water stakeholders in Zanzibar to the urgent task of initiating a quick mitigation response to control these alarming water risks.  相似文献   

16.
A new kinetic method has been developed for the determination of iodine in water samples. The method is based on the catalytic effect of I? with the oxidation of Indigo Carmine (IC) by KBrO3 in the sulfuric acid medium. The optimum conditions obtained are 0.16 M sulfuric acid, 1?×?10?3 M of IC, 1?×?10?2 M KBrO3, reaction temperature of 35°C, and reaction time of 80 s at 612 nm. Under the optimized conditions, the method allowed the quantification of I? in a range of 12–375 ng/mL with a detection limit of 0.46 ng/mL. The method was applied to the determination of iodine in river and city water samples with the satisfactorily results.  相似文献   

17.
The results of an innovative study on a new and highly efficient stationary phase based on the SnO2 nanorods coating on fused silica have been reported in this paper. SnO2 nanorods have been grown on fused silica fibers using a hydrothermal process. The extraction properties of the fiber were investigated using headspace solid-phase microextraction (HS-SPME) mode coupled with gas chromatography–mass spectrometry detection for 1,4-dichloro-2-nitrobenzene, biphenyl, and acenaphthene. The effect of different variables on extraction efficiency was studied simultaneously using Box–Behnken method as experimental design. The variables of interest in the HS-SPME were salt effect, adsorption temperature, extraction, and desorption time. Under optimal conditions, the calibration curves were linear up to 102–105 ng?L?1 (R 2?>?0.998) with detection limits of 10?3, 10?1, and 10 ng?L?1 for acenaphthene, biphenyl, and 1,4-dichloro-2-nitrobenzene, respectively. The relative standard deviations for single fiber and fiber to fiber were less than 9.8 and 12.5 %, respectively. The high stability of the SnO2 nanostructure coating is proved at relatively high temperatures (up to 300 °C) with a high extraction capacity and long lifespan (more than 100 times). By applying the proposed technique, promising recoveries (93–98 %) were obtained in the analysis of environmental water samples.  相似文献   

18.
This study reports a very selective, easy, and precise method for rapid separation of trace amounts of copper in aqueous samples using octadecyl silica-bonded phase membrane disks modified by 2,2'-[ethane-1,2-diylbis(thio)]dianiline (EDTD) combined with flame atomic absorption spectrometric determination. In addition, the synthesis and spectral characterization of EDTD have been described in detail. All the affecting experimental variables such as pH, amount of modifier, eluent type, sample and eluent flow rate, interfering ions, and disk capacity were also investigated. The target analyte (trace copper) was quantitatively retained at pH?=?4 and eluted with 6.0 mL of 0.5 M HNO3 at flow rates of 40 and 10 mL min?1 for analyte passage and elution steps, respectively, through the disks modified with 17.0 mg of EDTD. The proposed method also allows an enrichment factor of about 500 and has a detection limit of 0.005 ng mL?1. The method has been successfully applied for isolation and determination of copper in different water samples, peppers, and standard alloys.  相似文献   

19.
A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid–liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L?1 (based on 3Sb/m) in water and 0.4 and 1.6 μg L?1 in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1–300 and 2–400 μg L?1, repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.  相似文献   

20.
The heavy metals (Fe, Zn, Pb, Ni, Cr, Co, and Cd) burden in wastewater, soil, and vegetable samples from a wastewater irrigated farm located at KorleBu, Accra has been investigated. Flame atomic absorption spectrometry after microwave digestion using a combination of HNO3, HCl, and H2O2 (for water), and HNO3 and HCl (for soil and vegetables). The mean concentrations (in milligrams per kilogram) of heavy metals in the soil samples were in the order of Fe (171?±?5.22)?>?Zn (36.06?±?4.54)?>?Pb (33.35?±?35.62)?>?Ni (6.31?±?8.15)?>?Cr (3.40?±?3.63)?>?Co (1.36?±?0.31)?>?Cd (0.43?±?0.24), while the vegetables were in the order of Fe (183.11?±?161.2)?>?Zn (5.38?±?3.50)?>?Ni (3.52?±?1.27)?>?Pb (2.49?±?1.81)?>?Cr (1.46?±?0.51)?>?Co (0.66?±?0.25)?>?Cd (0.36?±?0.15). The bioconcentration factors suggest environmental monitoring for the heavy metals as follows: Cd (0.828), Cr (0.431), Ni (0.558), Co (0.485), and Fe (1.067). Estimated daily intakes were very low for both children and adults except Fe (0.767 mg/kg/day) in children. The population that consume vegetables from the study area were, however, estimated to be safe based on the results obtained from the health risk index, which were all?<?<1. The sodium absorption ratio according to FAO (1985) classifications indicate that the wastewater in the study area is unsuitable for irrigation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号