首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nine metals were monitored in the beach sediment in Mumbai from May 2011 to March 2012 to evaluate the spatial and temporal distributions. The average heavy metal concentrations exhibited the following order: Fe > Mn > Cr > Co > Ni > Pb > Zn > Cu > Cd for the four sampling sites. The mean concentrations (± SD) of Fe, Mn, Cr, Co, Ni, Pb, Zn, Cu and Cd were estimated to be 31.15?±?10.02 g kg?1, 535.04?±?76.42, 151.98?±?97.90, 92.76?±?14.18, 67.52?±?11.32, 59.57?±?15.19, 54.65?±?15.01, 32.24?±?8.07 and 18.75?±?1.76 mg kg?1, respectively. The results indicated that the sediments were polluted with Cd, Cr, Co and Pb due to high anthropogenic influences. Spatial variation of metals revealed that most of the metals were high in Dadar beach and low in Aksa beach. Cd was the highest contaminant metal studied with a mean contamination factor of 93.75. The pollution load indices of the studied beaches ranged from 1.63 (Aksa) to 1.91 (Dadar) and indicated that the beach sediments were polluted with heavy metals. The heavy metal contents increased in relation to monsoon, and most of the heavy metals showed significantly high concentrations in November during the post-monsoon. The statistical analysis revealed significant effect of study site on all the metals studied. Further, there was a significant difference on metal accumulation on bimonthly basis in relation to weather pattern in Mumbai beaches.  相似文献   

2.
Forty-eight air-filter samples (PM10) were analysed to identify the concentration level of partially leached metals (PLMs; As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and V) from Puebla City, México. Samples were collected during 2008 from four monitoring sites: (1) Tecnológico (TEC), (2) Ninfas (NIN), (3) Hermanos Serdán (HS) and (4) Agua Santa (AS). The results indicate that in TEC, As (avg. 424 ng m?3), V (avg. 19.2 ng m?3), Fe (avg. 1,202 ng m?3), Cu (avg. 86.6 ng m?3), Cr (41.9 ng m?3) and Ni (18.6 ng m?3) are on the higher side than other populated regions around the world. The enrichment of PLMs is due to the industrial complexes generating huge dust particles involving various operations. The results are supported by the correlation of metals (Mn, Cd and Co) with Fe indicating its anthropogenic origin and likewise, As with Cd, Co, Fe, Mn, Pb and V. The separate cluster of As, Fe and Mn clearly signifies that it is due to continuous eruption of fumaroles from the active volcano Popocatépetl in the region.  相似文献   

3.
Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L?1; Cu was 392 μg L?1 at the extreme downstream, Allahabad and Ni was 146 μg L?1 at midstream, Agra. Largest concentration of Cu was 617 μg kg?1, Ni 1,621 μg kg?1 at midstream while Pb was 1,214 μg kg?1 at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg?1 in Oreochromis niloticus and 1.55 μg kg?1 in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg?1 in O. niloticus and 124 μg kg?1 in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02?×?10?4 which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.  相似文献   

4.
A new, simple, and rapid separation and preconcentration procedure, for determination of Pb(II), Cd(II), Zn(II), and Co(II) ions in environmental real samples, has been developed. The method is based on the combination of coprecipitation of analyte ions by the aid of the Mo(VI)–diethyldithiocarbamate–(Mo(VI)-DDTC) precipitate and flame atomic absorption spectrometric determinations. The effects of experimental conditions like pH of the aqueous solution, amounts of DDTC and Mo(VI), standing time, centrifugation rate and time, sample volume, etc. and also the influences of some foreign ions were investigated in detail on the quantitative recoveries of the analyte ions. The preconcentration factors were found to be 150 for Pb(II), Zn(II) and Co(II), and 200 for Cd(II) ions. The detection limits were in the range of 0.1–2.2 μg L?1 while the relative standard deviations were found to be lower than 5 % for the studied analyte ions. The accuracy of the method was checked by spiked/recovery tests and the analysis of certified reference material (CRM TMDW-500 Drinking Water). The procedure was successfully applied to seawater and stream water as liquid samples and baby food and dried eggplant as solid samples in order to determine the levels of Pb(II), Cd(II), Zn(II), and Co(II) ions.  相似文献   

5.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

6.
Cd, Co, Cr, Cu, Mn, Ni, Zn, and Pb were measured in feather samples of adult, subadult, and juvenile of Larus dominicanus, sampled in the Florianólis, SC, in the south of Brazil in December 2005, by flame atomic absorption spectrophotometry. The average of the distribution of Cd concentration in adult feathers (0.072 μg g???1) was significantly different than that found in juvenile feathers (0.021 μg g???1). Cu concentration averages were not significantly different between adults (13.30 μg g???1), subadults (9.67 μg g???1), and juveniles (13.76 μg g???1). For adults and juveniles there was significant difference in feather concentrations for Cd, Co, Cr, Ni, and Pb. The distribution of Mn concentration averages in feathers differs between adults (11.36 μg g???1) and juveniles (1.184 μg g???1). Ni concentration averages of adults (5.92 μg g???1) were significantly higher than those of juveniles (2.23 μg g???1). For Pb, concentration averages were significantly higher in adults (7.53 μg g???1) than in juveniles (1.47 μg g???1). The concentration of Co and Cr in juvenile and subadults are statistically different when compared with the adults. In the present study, levels of Cd, Co, Cr, Mn, Ni, Zn, and Pb increased with age. The concentrations of essential trace elements in L. dominicanus were generally comparable to values reported in other studies. With non-essential metals (Cd, Pb, and Ni), in our study, L. dominicanus had lower values than those reported for their northern Atlantic counterparts.  相似文献   

7.
Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P?+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), total Kjeldahl nitrogen (TKN), phosphate (PO4 3?), sulfate (SO4 2?), ferrous (Fe2+), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.  相似文献   

8.
A study was conducted during November, 2005–October, 2006 to evaluate the surface water quality of river Ganga around Kolkata. The samples were analyzed for a number of physico-chemical parameters using standard laboratory procedures and giving prime thrust to determine the heavy metal concentrations (Fe, Mn, Cu, Zn, Pb, Cd, Cr, and Ni) of surface water at four different locations of the river Ganga around Kolkata from two points (middle of the river stream and a discharge point) at each location. Out of 96 samples analyzed, Fe, Mn, Cu, Zn, and Ni were detected in 71, 47, 38, 60, and 45 samples in the concentrations ranging from 0.013 to 5.49, 0.022 to 1.78, 0.003 to 0.033, 0.005 to 0.293, and 0.045 to 0.24 mg L???1, respectively. Cd and Pb were detected in six and 21 samples in the range of 0.005 to 0.006 and 0.05 to 0.53 mg L???1, respectively. But Cr was not detected in any of the samples analyzed. The metals exhibited no significant variation with respect to sampling locations as well as discharge points. However, the concentration of those metals varied with season, being higher in rainy and lower in winter season.  相似文献   

9.
A simple and sensitive solid phase extraction (SPE) method on multiwalled carbon nanotubes (MWCNTs) is presented for the determination of cadmium, lead, nickel, copper, and zinc at trace levels combined with flame atomic absorption spectrometry. The effects of parameters like pH, sample volume, sample and eluent flow rates, eluent concentration, and volume and type of eluent on the recovery of trace elements was examined. The metals retained on the nanotube at pH 6.5 as α-benzoin oxime complexes were eluted by 10 mL 2 M HNO3 in acetone. The influence of matrix ions on the developed method was also evaluated. The preconcentration factor of the method was found to be 50. The detection limits for Cd(II), Pb(II), Ni(II), Cu(II), and Zn(II) were found as 1.7, 5.5, 6.0, 2.3, and 2.4 μg L?1, respectively. To test the accuracy of the method, the method was applied to TMDA-70 fortified lake water and Spinach 1570A standard reference materials. Addition recovery studies were applied to tap water and cracked wheat samples, and determination of the analyte elements was carried out in some food samples with good results.  相似文献   

10.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

11.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

12.
This study reports the quantification of the toxicity of particulate matter (PM)-bound metals and their possible associated risks to human health. For assessment of PM, 24-h samples of PM10 and PM2.5 were collected by Mini Vol-TAS sampler at an urban site of Pune. Samples were sequentially extracted with ultrapure water and concentrated HNO3 and analyzed for “soluble” and “total” metals. Factor analysis identified the resuspension of road dust due to traffic, biomass burning, construction activities, and wind-blown dust as possible sources that played an important role for overall pollution throughout the year. Water-soluble proportion was found to be ≤20 % for Cr, Co, Fe, and Al; ≥50 % for Sr, Cd, Ca, and Zn; and a substantial proportion (~25–45 %) for Mn, Ba, K, Na, Ni, Mg, Cu, and Pb metals in PM10. For PM2.5, the water-soluble proportion was ≤20 % for Fe, Co, Ni, Cr, and Al, while Sr, K, and Cd were mostly soluble (>50 %) and Cu, Ba, Mn, Ca, Zn, Pb, Na, and Mg were substantially soluble (~25–45 %). In the present study, among the toxic metals, Cd and Pb show higher concentration in the soluble fraction and thus represent the higher bioavailability index and especially are harmful to the environment and exposed person. Risk calculations with a simple exposure assessment method showed that the cancer risks of the bioavailable fractions of Cr, Cd and Ni were greater than the standard goal.  相似文献   

13.
Manila clams (Ruditapes philippinarum) and sediments were collected bimonthly during 2007 at five locations in Jiaozhou Bay near Qingdao, China, to determine heavy metal concentrations and to assess the validation of R. philippinarum as a metal biomonitor. Concentrations of heavy metals in clam soft tissues ranged between 0.75 and 3.31, 0.89 and 15.20, 5.70 and 26.03, 52.12 and 110.33, 10.30 and 72.34, 9.64 and 28.60, and 3.15 and 52.75 μg g???1 dry weight for Cd, Pb, Cu, Zn, Mn, Cr, and Ni, respectively. Most of the highest values occurred at the northeast bay and the lowest values occurred at the western part. Regarding seasonal variation, relatively high tissue metal concentrations were observed during October or December. A similar pattern was also found in habitat sediments. There was a strong correlation between the concentrations of Cd, Pb, Zn, Mn, Cr, and Ni in soft tissues and surrounding sediments. It is indicated that R. philippinarum could be used as a biomonitor for heavy metal contamination in Jiaozhou Bay.  相似文献   

14.
Contamination of the ocean by heavy metals may have ecosystem-wide implications because they are toxic even if present in trace levels, and the relative ease of their bioaccumulation by marine organisms may affect human health, primarily through consumption of contaminated fish. We evaluated metal concentrations in six different popular edible fish species and estimated the potential health risks from consumption of contaminated fish. There was no correlation between fish length and average metal accumulation although the fish species tended to accumulate significantly more Al and Zn (P?<?0.05) than any of the other metals. Significantly higher Mn concentrations were found in fish gills compared to other body parts in all fish species. Bronze seabream, Catface rockcod, and Slinger seabream had significantly higher mean Cr concentration in the liver than in either the tissues or gills. The highest concentration of Zn in fleshy tissue was in Horse mackerel (56.71 μg g?1) followed by Bronze seabream (31.07 μg g?1). Al levels ranged from 5.6 μg g?1 in Atlantic mackerel to 35.04 μg g?1 in Horse mackerel tissue while Cu and Cr concentrations were highest in the tissues of Horse mackerel (6.83 and 1.81 μg g?1, respectively) followed by Santer seabream (3.15; 1.09 μg g?1) and Bronze seabream (3.09; 1.30 μg g?1), respectively. The highest tissue concentration of Mn was detected in Bronze seabream (8.23 μg g?1) followed by Catface rockcod (6.05 μg g?1) and Slinger seabream (5.21 μg g?1) while Pb concentrations ranged from a high of 8.44 μg g?1 in Horse mackerel to 1.09 μg g?1 in Catface rockcod. However, the estimated potential health risks from fish consumption as determined by the target hazard quotient (THQ) and hazard index (HI) were significantly lower than 1, implying that metals were not present in sufficiently high quantities to be of any health and/or food and security concern in the studied fishes.  相似文献   

15.
New solid-phase extractor (MWCNTs-5-ASA) was synthesized via covalent immobilization of 5-aminsalicylic acid onto multi-walled carbon nanotubes (MWCNs). The success of the functionalization process was confirmed using Fourier transform infrared spectroscopy, scanning electron microscope, and surface coverage determination. Batch experiments were conducted as a function of pH to explore MWCNTs-5-ASA efficiency to extract several metal ions viz., Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II). It was found that Pb(II) exhibits the highest extraction percentage with maximum adsorption capacity 32.75 mg g?1. Its binding performance was well fitted with Langmuir sorption isotherm. On the other hand, the selective separation and preconcentration of trace Pb(II) under dynamic conditions prior to determination by inductively coupled plasma-optical emission spectrometry was investigated under different parameters. These included the rate of flow and volume of sample solution, in addition to the type of the eluate, its volume and concentration. The effect of a variety of foreign ions on the recovery percentage was also evaluated. Trace Pb(II) ions present in 500 mL aqueous solution adjusted to pH 4.0 were retained on 50 mg of MWCNTs-5-ASA and completely eluted using 4.0 mL of 2 M HNO3. The limit of detection and the precision of the method were 0.25 ng mL?1 and 2.8 %, respectively (N?=?5). This methodology has been applied for the determination of Pb(II) in water samples with good results.  相似文献   

16.
The present research reports on the application of modified multiwalled carbon nanotubes as a new, easily prepared, and stable solid sorbent for the column preconcentration of ultra-trace amounts of cadmium in aqueous solution. Multiwalled carbon nanotubes were oxidized with concentrated HNO3 and modified with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and then were used as a solid phase for the column preconcentration of Cd(II). Elution was carried out with 0.5 mol?L?1 HNO3. The amount of eluted Cd(II) was measured using electrothermal atomic absorption spectrometry. Various parameters such as pH, sample and eluent flow rate, eluent concentration, breakthrough volume, and interference of a great number of anions and cations on the retention of analyte on sorbent were studied. Under the optimized conditions, the calibration graph was linear in the range of 0.67 ng?L?1 to 5.0 μg?L?1 and the detection limit (3Sb, n?=?7) was 0.14 ng?L?1 in initial solution. A preconcentration factor of 300 and relative standard deviations of ±3.6 % for seven successive determinations of 3 ng of Cd(II) were achieved. The column preconcentration was successfully applied to the analysis of river water, waste water, and Persian Gulf water sample.  相似文献   

17.
In this work, spectrophotometer was used as a detector for the determination of uranium from water, biological, and ore samples with a flow injection system coupled with solid phase extraction. In order to promote the online preconcentration of uranium, a minicolumn packed with XAD-4 resin impregnated with nalidixic acid was utilized. The system operation was based on U(VI) ion retention at pH 6 in the minicolumn at flow rate of 15.2 mL min?1. The uranium complex was removed from the resin by 0.1 mol dm?3 HCl at flow rate of 3.2 mL min?1 and was mixed with arsenazo III solution (0.05 % solution in 0.1 mol dm?3 HCl, 3.2 mL min?1) and driven to flow through cell of spectrophotometer where its absorbance was measured at 651 nm. The influence of chemical (pH and HCl (as eluent and reagent medium) concentration) and flow (sample and eluent flow rate and preconcentration time) parameters that could affect the performance of the system as well as the possible interferents was investigated. At the optimum conditions for 60 s preconcentration time (15.2 mL of sample volume), the method presented a detection limit of 1.1 μg L?1, a relative standard deviation (RSD) of 0.8 % at 100 μg L?1, enrichment factor of 30, and a sample throughput of 42 h?1, whereas for 300 s of the preconcentration time (76 mL of sample volume), a detection limit of 0.22 μg L?1, a RSD of 1.32 % at 10 μg L?1, enrichment factor of 150, and a sampling frequency of 11 h?1 were reported.  相似文献   

18.
In this study, an ultra-sensitive and highly selective, rapid flow-injection spectrophotometric method for the determination of iron (II) and total iron has been proposed. The method was based on the reaction between iron (II) and 2′, 3, 4′, 5, 7-pentahydroxyflavone in slightly acidic solution with a strong absorption at 415 nm. The carrier solution used was 1?×?10?5 M 2′, 3, 4′, 5, 7-pentahydroxyflavone in 0.1 M HAc/Ac? buffer solution at pH 4.5. Parameters that affect simultaneously the determination of iron (II) and interfering ions were tested. The relative standard deviation for the determination of 50 μg L?1 iron (II) was 0.85 % (n?=?10), and the limit of detection (blank signal plus three times the standard deviation of the blank) was 3 μg L?1, both based on injection volumes of 20 μL. The method has been successfully applied to the determination of iron (II) and total iron in water samples and ore samples. The method was verified by analysing a certified reference material Zn/Al/Cu 43XZ3F.  相似文献   

19.
The heavy metals (Fe, Zn, Pb, Ni, Cr, Co, and Cd) burden in wastewater, soil, and vegetable samples from a wastewater irrigated farm located at KorleBu, Accra has been investigated. Flame atomic absorption spectrometry after microwave digestion using a combination of HNO3, HCl, and H2O2 (for water), and HNO3 and HCl (for soil and vegetables). The mean concentrations (in milligrams per kilogram) of heavy metals in the soil samples were in the order of Fe (171?±?5.22)?>?Zn (36.06?±?4.54)?>?Pb (33.35?±?35.62)?>?Ni (6.31?±?8.15)?>?Cr (3.40?±?3.63)?>?Co (1.36?±?0.31)?>?Cd (0.43?±?0.24), while the vegetables were in the order of Fe (183.11?±?161.2)?>?Zn (5.38?±?3.50)?>?Ni (3.52?±?1.27)?>?Pb (2.49?±?1.81)?>?Cr (1.46?±?0.51)?>?Co (0.66?±?0.25)?>?Cd (0.36?±?0.15). The bioconcentration factors suggest environmental monitoring for the heavy metals as follows: Cd (0.828), Cr (0.431), Ni (0.558), Co (0.485), and Fe (1.067). Estimated daily intakes were very low for both children and adults except Fe (0.767 mg/kg/day) in children. The population that consume vegetables from the study area were, however, estimated to be safe based on the results obtained from the health risk index, which were all?<?<1. The sodium absorption ratio according to FAO (1985) classifications indicate that the wastewater in the study area is unsuitable for irrigation purposes.  相似文献   

20.
This study was carried out to find out the comparative distribution of heavy metals (Fe, Cu, Mn, Zn, Co, Cr, Cd and Pb) in various tissues (muscles, gills, liver, stomach and intestine) of Cyprinus carpio from Rawal Lake, Pakistan, during summer and winter. Relatively higher concentrations of Cd, Co, Cr, Cu, Fe and Zn were found in the stomach samples, while the highest Pb and Zn levels were noted in muscle and intestine samples, respectively. Correlation study exhibited diverse relationships among the metals in various tissues. Generally, the metal concentrations found during the summer were comparatively higher than the winter. Potential non-carcinogenic and carcinogenic health risks related to the metals in C. carpio were evaluated using the US Environmental Protection Agency approved cancer risk assessment guidelines. The calculated daily and weekly intakes of Pb, Cd, Cr and Co through the fish consumption were significantly higher than the permissible limits. In relation to the non-carcinogenic risks to human, Pb, Cd, Cr, Co and Zn levels were higher than the safe limits; however, carcinogenic risks related to Cr (3.9?×?10?3 during summer and 1.1?×?10?3 during winter) and Pb (2.6?×?10?4 during summer and 1.5?×?10-4 during winter) clearly exceeded the safe limit (1?×?10?6). Consequently, the consumption of C. carpio from Rawal Lake on regular basis was considered unsafe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号