首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of pasture vegetation, mainly Trifolium pratensis, were collected at the Botanic Garden of the University of Bologna during the period 1998-2000 and measured by gamma-spectrometry for determining thoron progeny. Concentrations of 212Pb were between 1.5 and 20 Bq m−2, with individual peaks up to 70 Bq m−2. Soil samples were collected at the same location and physically characterised. Their chemical composition (particularly Th and U) was determined by X-ray fluorescence spectroscopy. Lead-212 on plants mainly originates from dry and wet deposition of this isotope generated in the lower atmosphere by the decay of its short-lived precursor 220Rn, which is produced in the upper soil layers as a member of the natural thorium decay chain and exhales into the atmosphere. Concentrations of 220Rn in the atmosphere depend on (1) the amount of Th present in soil, (2) the radon fraction which escapes from the soil minerals into the soil pore space, (3) its transport into the atmosphere, and (4) its redistribution within the atmosphere. The mobility of radon in soil pore space can vary by orders of magnitude depending on the soil water content, thus being the main factor for varying concentrations of 220Rn and 212Pb in the atmosphere. We present a simple model to predict concentrations of thoron in air and its progeny deposited from the atmosphere, which takes into account varying soil moisture contents calculated by the OPUS code. Results of this model show close agreement with our observations.  相似文献   

2.
An energy discriminate CR-39® nuclear track etch dosimeter for use in a 220Rn and 222Rn gas monitor has been developed and experimentally assessed. It utilises a thin film of Mylar® C to attenuate the alpha particle energies to allow only the damage tracks created by the 8.785 MeV alpha particles emitted from 212Po of the 232Th decay chain to be registered in the CR-39® plaque, allowing for the direct measurement of 220Rn gas concentrations. The dosimeter was developed through a combination of experimental investigations and theoretical simulations using the Monte Carlo ion transport modelling program Stopping and Range of Ions in Materials (SRIM 2008). A film thickness of 54 μm has been shown to attenuate all alpha energies less then 7.7 MeV.  相似文献   

3.
The implementation of the Comprehensive Test Ban Treaty is resulting in the construction of a world-wide system of 80 monitoring stations that will be able to detect air-borne radioactivity, not only from atomic bombs but also from other anthropogenic and natural sources. A prototype monitoring station has been operating since April 1996 in Vancouver, BC, Canada. This station provides daily reports of natural radioactivity, including 7Be and decay products of 220Rn (thoron). Data for 212Pb concentrations have been analyzed over a 6-month period. The concentration is reduced by rainfall, high wind velocity, and low temperatures and it also depends on the wind direction, but atmospheric inversions appeared to have little impact. We present a relatively simple model, which is easy to use and which offers predictive powers that can be applied to other similar environmental situations.  相似文献   

4.
Radon is emitted to the atmosphere with quasi constant emission rates depending on the radium concentration in the earth's crust and soil physical properties. In this way, the 222Rn and 220Rn concentration in air reflects significantly the thickness of the atmospheric boundary layer (ABL). The aerosol-associated, beta-emitting progeny nuclides of 222Rn were measured daily in the framework of the atmospheric radioactivity monitoring program of NIMH at Sofia. The 214Pb concentration was estimated from the measured short-lived beta activity of 24-h filter samples, changed daily at 6:00 GMT. The impact of some meteorological factors such as wind direction, wind velocity, humidity, and temperature on short-lived beta radionuclides is estimated, and the results show no simple statistical relationship. A seasonal pattern was observed with winter minima and late summer-early autumn maxima. High variability in daily morning concentrations and mean monthly values was observed. There were well pronounced differences between years. The height of the convective ABL was estimated from daily radio-soundings at 12:00 GMT for the period 2001-2006 and from seven soundings per day during the experimental campaign in Sofia in October 2003. In general, concentrations of short-lived 222Rn progeny nuclides decreased with increased convective ABL height.  相似文献   

5.
Considering the role of radon in epidemiology, an attempt was made to make a nation-wide map of indoor 222Rn and 220Rn for India. More than 5000 measurements have been carried out in 1500 dwellings across the country comprising urban and nonurban locations. The solid state nuclear track detectors based twin cup 222Rn/220Rn discrimination dosimeters were deployed for the measurement of indoor 222Rn, 220Rn and their progeny levels. The geometric means of estimated annual inhalation dose rate due to indoor 222Rn, 220Rn and their progeny in the dwellings was 0.94 mSvy−1 (geometric standard deviation 2.5). It was observed that the major contribution to the indoor inhalation dose was due to indoor 222Rn and its progeny. However, the contribution due to indoor 220Rn and its progeny was not trivial as it was found to be about 20% of the total indoor inhalation dose rates. The indoor 222Rn levels in dwellings was significantly different depending on the nature of walls and floorings.  相似文献   

6.
Over the past ∼5 decades, the distribution of 222Rn and its progenies (mainly 210Pb, 210Bi and 210Po) have provided a wealth of information as tracers to quantify several atmospheric processes that include: i) source tracking and transport time scales of air masses; ii) the stability and vertical movement of air masses iii) removal rate constants and residence times of aerosols; iv) chemical behavior of analog species; and v) washout ratios and deposition velocities of aerosols. Most of these applications require that the sources and sink terms of these nuclides are well characterized.Utility of 210Pb, 210Bi and 210Po as atmospheric tracers requires that data on the 222Rn emanation rates is well documented. Due to low concentrations of 226Ra in surface waters, the 222Rn emanation rates from the continent is about two orders of magnitude higher than that of the ocean. This has led to distinctly higher 210Pb concentrations in continental air masses compared to oceanic air masses. The highly varying concentrations of 210Pb in air as well the depositional fluxes have yielded insight on the sources and transit times of aerosols. In an ideal enclosed air mass (closed system with respect to these nuclides), the residence times of aerosols obtained from the activity ratios of 210Pb/222Rn, 210Bi/210Pb, and 210Po/210Pb are expected to agree with each other, but a large number of studies have indicated discordance between the residence times obtained from these three pairs. Recent results from the distribution of these nuclides in size-fractionated aerosols appear to yield consistent residence time in smaller-size aerosols, possibly suggesting that larger size aerosols are derived from resuspended dust. The residence times calculated from the 210Pb/222Rn, 210Bi/210Pb, and 210Po/210Pb activity ratios published from 1970’s are compared to those data obtained in size-fractionated aerosols in this decade and possible reasons for the discordance is discussed with some key recommendations for future studies.The existing global atmospheric inventory data of 210Pb is re-evaluated and a ‘global curve’ for the depositional fluxes of 210Pb is established. A current global budget for atmospheric 210Po and 210Pb is also established. The relative importance of dry fallout of 210Po and 210Pb at different latitudes is evaluated. The global values for the deposition velocities of aerosols using 210Po and 210Pb are synthesized.  相似文献   

7.
In order to investigate the applicability of 212Pb as a tracer for atmospheric transport in the sub-regional scale (few hundred kilometers in horizontal direction and up to ∼1 km by height), we measured the air concentrations of the short-lived radionuclide 212Pb along with the long-lived 7Be and 210Pb near the ground surface. For this purpose, simultaneous observations were continued for several days at three locations: a reference point representative for standard land surface atmosphere conditions, a second location at an altitude 650 m near the reference point, and on a solitary island ∼180 km from the reference point. Measurements of radioactivity in aerosol particle samples collected at intervals of 2-3 h with a high-volume air sampler were performed by extremely low background gamma-ray spectrometry with the use of Ge detectors located at the Ogoya Underground Laboratory. Concentration of 7Be or 210Pb and their variation patterns was found to be similar among the three points during the whole observation period except for moment of the passage of a cold front. The results indicate that distributions of concentrations of the long-lived nuclides were uniform in this range. On the other hand, concentration levels and the variation patterns of the short-lived 212Pb differed greatly from one location to another, reflecting differences in geographical location and altitude of the observation points. Additionally, there were certain indications that observed concentration of 212Pb contained two components: an autogenous component from sources nearby and a heterogenous one from faraway sources carried by atmospheric horizontal transport. Results of this study provide experimental proof that 212Pb can be used as a tracer of sub-regional atmospheric transport.  相似文献   

8.
A novel technique has been developed for determining the 212Pb activity of fresh waters. This is of interest to environmental monitoring programmes that utilise gross α-activity methods to screen for anthropogenic radionuclides. The contribution from 212Pb varies, and is difficult to experimentally measure due to its relatively short half-life (t½ = 10.6 h) and low environmental activity (<0.1 Bq l−1). The use of a three-stage technique that encompasses a unique form of pre-concentration, separation and analysis by liquid scintillation counting allows a lower detection limit of 0.006 Bq l−1 with a chemical yield of 92.5 ± 5.6%. The measurement can be obtained within 7 h of sample collection, and is calculated using the radioactive decay of 212Bi. Other naturally occurring radionuclides may also be extracted using the pre-concentration stage of the technique, with efficiencies above 90% at a range of pH values.  相似文献   

9.
The assembling of a system for field sampling and activity concentration measurement of radon dissolved in groundwater is described. Special attention is given in presenting the calibration procedure to obtain the radon activity concentration in groundwater from the raw counting rate registered in a portable scintillation detector and in establishing the precision of the activity concentration measurements. A field procedure was established and the system tested during one year of monthly observations of 222Rn activity concentration in groundwater drawn from two wells drilled on metamorphic rocks exposed at Eastern São Paulo State, Brazil. The observed mean 222Rn activity concentrations are 374 Bq/dm3 in one well and about 1275 Bq/dm3 in the other one. In both wells the 222Rn activity concentrations showed a seasonal variation similar to variations previously reported in the literature for the same region.  相似文献   

10.
The origin of 210Po activity and its fluctuations in the air are discussed in this paper. In the case of atmospheric aerosol samples, a comparison of the 210Po/210Pb and 210Bi/210Pb activity ratios makes it possible not only to determine aerosol residence times but also to appraise the contribution of the unsupported 210Po coming from other sources than 222Rn decay, such as human industrial activities, especially coal combustion. A simple mathematical method makes it possible to observe the seasonal fluctuations of the anthropogenic excess of 210Po in the urban air. The average doses of 210Po intake with food (including drinking water) and inhalation of urban aerosols are usually lower than those from 210Po intake by cigarette smokers and negligible in comparison to total natural radiation exposure.  相似文献   

11.
The long-term variation, nature and correlations of outdoor 222Rn and 220Rn progeny concentrations measured during the period 1994-2009 were investigated. The time series of data were obtained within the framework of the monitoring program performed by the Environmental Radioactivity Monitoring Station (ERMS) Bac?u, a component part of the National Environmental Radioactivity Survey Network (NERSN), coordinated by National Environmental Protection Agency (NEPA). The measuring method is based on the total beta measurements of atmospheric aerosol filters, using a low background total beta counter and (90Sr/Y) reference standard. Analysis of the time series of progeny concentrations in the low atmosphere makes evident different patterns of variation of these concentrations: diurnal, seasonal and annual. A possible relationship of progeny concentration increase with global warming is emphasized. In order to find the dominant frequency of the physical processes determining progeny concentration variability the power spectrum has been used. The deterministic nature of the time series of concentrations has been studied making use of the autocorrelation function and stationarity of the original data and of their phase randomized time series. Also, the correlations with meteorological parameters have been investigated using Pearson’s correlation coefficient with corresponding level of significance.  相似文献   

12.
The functioning of radon diffusion chambers was studied using the Monte Carlo code RAMMX developed here. The alpha particles from radon are assumed randomly produced in the volume of the cylinder, and those from the progeny are assumed to originate randomly at the cylindrical surface. The energy spectrum, the distribution of incident angles, and the distribution of path lengths of the alpha particles on the detector were obtained. These quantities vary depending on input parameters such as initial alpha particle energy, radius and depth of the diffusion chamber, detector size and atmospheric pressure. The calculated energy spectrum for both 222Rn and 220Rn was compared with experiment, permitting the identification of each peak and its origin, and a better understanding of radon monitoring. Three aspects not considered in previous calculations are progeny alphas coming from surfaces of the monitor, taking into account the atmospheric pressure, and including the isotope 220Rn.  相似文献   

13.
Large temporal variations of radon (222Rn) are often encountered in air in the geologic environment, at time scales from diurnal to annual. Interpretations as to the nature of these variations, unique to 222Rn, often invoke either above surface atmospheric variations, or the influence of subtle active geodynamic processes. So far the eventual geophysical drivers of the variation of 222Rn as well as its specific qualities enabling this temporal variation are not known. New insight on the temporal variation of 222Rn is gained by experimental simulation in confined air. Two short laboratory experiments, and one external experiment lasting over 3 years, were performed inside closed canisters and using natural and commercial 222Rn sources. Internal and external gamma and alpha detectors recorded variations of the radiation, up to around 20% of the equilibrium level. Radon signals of different time scale occurred with: a) periodic annual and semi-annual signals; b) non-periodic multi-day signals; c) periodic daily signals. Similar, related, inversely-related and dissimilar temporal patterns were manifested in the measured time series of the different sensors. Diurnal periodicity was dominated by the solar tide components S1, S2 and S3, exhibiting unlike relative amplitudes and different phases at the different sensors. A compound association occurs among the amplitudes and phases of the diurnal and seasonal periodicities of the daily 222Rn signal, linking the periodic phenomena to the rotation of earth around its axis and around the sun. 222Rn variation patterns in the frequency-time domain cannot be driven by the corresponding atmospheric variation patterns. These results, obtained under static and isolated conditions, are in disagreement with the expected radioactive equilibrium and its spatially uniform expression within and around the experimental volume. The external influence which drives the daily signals evolving from 222Rn inside the canister is non-atmospheric and seemed to be from a remote source and traversed a 5-cm thick lead shield. The similarities with observations on 222Rn signals from upper crustal levels imply that such an external influence, possibly as a component of solar irradiance, drives the 222Rn signals to a depth of at least 100 m. New combined prospects for the research are indicated in terms of the radioactive behavior of 222Rn in air and in terms of an above surface geophysical driver for this behavior.  相似文献   

14.
The radionuclides 210Po and 210Pb widely present in the terrestrial environment are the final long-lived radionuclides in the decay of 238U in the earth’s crust. Their presence in the atmosphere is due to the decay of 222Rn diffusing from the ground. The range of activity concentrations in ground level air for 210Po is 0.03-0.3 Bq m−3 and for 210Pb 0.2-1.5 Bq m−3.In drinking water from private wells the activity concentration of 210Po is in the order of 7-48 mBq l−1 and for 210Pb around 11-40 mBq l−1. From water works, however, the activity concentration for both 210Po and 210Pb is only in the order of 3 mBq l−1.Mosses, lichens and peat have a high efficiency in capturing 210Po and 210Pb from atmospheric fallout and exhibit an inventory of both 210Po and 210Pb in the order of 0.5-5 kBq m−2 in mosses and in lichens around 0.6 kBq m−2. The activity concentrations in lichens lies around 250 Bq kg−1, dry mass.Reindeer and caribou graze lichen which results in an activity concentration of 210Po and 210Pb of about 1-15 Bq kg−1 in meat from these animals. The food chain lichen-reindeer or caribou, and Man constitutes a unique model for studying the uptake and retention of 210Po and 210Pb in humans. The effective annual dose due to 210Po and 210Pb in people with high consumption of reindeer/caribou meat is estimated to be around 260 and 132 μSv a−1 respectively.In soils, 210Po is adsorbed to clay and organic colloids and the activity concentration varies with soil type and also correlates with the amount of atmospheric precipitation. The average activity concentration levels of 210Po in various soils are in the range of 20-240 Bq kg−1.Plants become contaminated with radioactive nuclides both by absorption from the soil (supported Po) and by deposition of radioactive fallout on the plants directly (unsupported Po). In fresh leafy plants the level of 210Po is particularly high as the result of the direct deposition of 222Rn daughters from atmospheric deposition. Tobacco is a terrestrial product with high activity concentrations of 210Po and 210Pb. The overall average activity concentration of 210Po is 13 ± 2 Bq kg−1. It is rather constant over time and by geographical origin.The average median daily dietary intakes of 210Po and 210Pb for the adult world population was estimated to 160 mBq day−1 and 110 mBq day−1, corresponding to annual effective doses of 70 μSv a−1 and 28 μSv a−1, respectively. The dietary intakes of 210Po and 210Pb from vegetarian food was estimated to only 70 mBq day−1 and 40 mBq day−1 corresponding to annual effective doses of 30.6 μSv a−1 and 10 μSv a−1, respectively. Since the activity concentration of 210Po and 210Pb in seafood is significantly higher than in vegetarian food the effective dose to populations consuming a lot of seafood might be 5-15 fold higher.  相似文献   

15.
222Rn and 220Rn in geothermal steam at Wairakei, NZ, range from 11 to 19, 500 Bq kg-1, and 25 to 16, 700 Bq kg-1, respectively, but do not cause toxic concentrations in air. The wide ranges are mainly due to differences in different physical conditions underground (e.g. thin silica diffusion barriers), not geochemical differences. Groundwater Rn from outside the area probably plays only a minor role. 210Po was found present in non-toxic levels in the steam. Historical records showed little change in Rn concentration over several decades, therefore potentially hazardous concentrations might be predicted from early exploration. 220Rn concentrations at Wairakei should decrease as the field becomes steam-dominated. Rock surfaces were variably leached or enriched with U, Th, Ra and 210Pb, providing a possible model for deposition in cooler regions near the field. Estimates of 222Rn permeability ranged from 2 to 77% of the maximum possible, with a median of 13%.  相似文献   

16.
Results for naturally occurring 7Be, 210Pb, 40K, 214Bi, 214Pb, 212Pb, 228Ac and 208Tl and anthropogenic 137Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The 212Pb and 208Tl, 214Bi and 214Pb, 7Be and 210Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The 7Be and 210Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the 7Be, 210Pb, 40K and 137Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.  相似文献   

17.
For aquatic sediments, the use of 210Pb originating from the decay of atmospheric 222Rn is a well-established methodology to estimate sediment ages and sedimentation rates. Traditionally, the measurement of 210Pb in soils and sediments involved laborious and time-consuming radiochemical separation procedures. Due to the recent development of advanced planar (‘n-type’) semi-conductors with high efficiencies in the low-energy range which enable the gamma-spectrometric analysis of the 46.5 keV decay line of 210Pb, sediment dating using this radionuclide has gained renewed interest.In this contribution, potentials and limitations of the 210Pb methodology and of the models used for estimating sediment ages and sedimentation rates are discussed and illustrated by examples of freshwater and marine sediments. Comparison with the use of 137Cs shows that the information which may be gained by these two tracers is complementary. As a consequence, both radionuclides should be used in combination for dating of recent sediments. It is shown that for various sedimentation regimes additional information from other sources (e.g. sediment lithology) may be needed to establish a reliable chronology. A strategy for sediment dating using 210Pb is recommended.  相似文献   

18.
A study on natural radiation exposure in different realistic living rooms   总被引:1,自引:0,他引:1  
In the first part of the paper, the factors affecting 222Rn properties in 25 different realistic living rooms (with low ventilation rates) of different houses in El-Minia City (Upper Egypt) have been studied; they included the activity concentration of 222Rn gas (C(o)), the unattached fraction (f(p)) of 218Po and 214Pb, the unattached potential alpha energy concentration (PAEC) and the equilibrium factor (F). The activity distributions of unattached 218Po and 214Pb as well as for the PAEC were determined. With a dosimetric model calculation [ICRP, 1994b. Human Respiratory Tract Model For Radiological Protection. Pergamon Press, Oxford. ICRP Publication 66] the total deposition fraction of unattached 218Po and 214Pb in human respiratory tract was evaluated to determine the total equivalent dose. An electrostatic precipitation method and a wire screen diffusion battery technique were both employed for the determination of 222Rn gas concentration and its unattached decay products, respectively. The mean activity concentration of 222Rn gas (C(o)) was found to be 110+/-20 Bq m(-3). The mean unattached activity concentrations of 218Po and 214Pb were found to be 0.6 and 0.35 Bq m(-3), respectively. A mean unattached fraction (f(p)) of 0.09+/-0.01 was obtained at a mean aerosol particle concentration (Z) of (2.9+/-0.23) x 10(3)cm(-3). The mean equilibrium factor (F) was determined to be 0.31+/-0.02. The mean PAEC of unattached 218Po and 214Pb was found to be 8.74+/-2.1 Bq m(-3). The activity distributions of 218Po and 214Pb show mean activity median diameters (AMD) of 1.5 and 1.85 nm with mean geometric standard deviations (SD) of 1.33 and 1.45, respectively. The mean activity distribution of the PAEC shows an AMD of 1.65 nm with a geometric standard deviation of 1.25. At a total deposition fraction of about 97% the total equivalent dose to the lung was determined to be about 133 microSv. The second part of this paper deals with a study of natural radionuclide contents of samples collected from the building materials of the rooms under investigations in part one. Analyses were performed in Marinelli beakers with a gamma multichannel analyzer equipped with a NaI(Tl) detector. The samples revealed the presence of the uranium-radium and thorium radioisotopes as well as 40K. Nine gamma-lines of the natural radioisotopes corresponding to 212Pb, 214Pb, 214Bi, 228Ac, 40K and 208Tl were detected and measured. The activity concentrations of 226Ra, 232Th and 40K were determined with mean activity concentrations of 58+/-19, 31+/-11 and 143+/-62 Bq kg(-1), respectively. These activities amount to a radium equivalent (Ra(eq)) of 113 Bq kg(-1) and to a mean value of external hazard index of 0.31.  相似文献   

19.
In the framework of a 222Rn screening campaign that was carried out in 58 public secondary schools in Galicia (NW Spain), the largest radon-prone area in the Iberian Peninsula, a positive correlation between indoor 222Rn concentration and outdoor gamma exposure rate was obtained. A new approach to the data acquisition in screening surveys was tested, improving the performances of this type of study and gathering useful data for future remedial actions. Using short-period detectors (charcoal canisters) firstly, in order to detect places showing 222Rn concentrations over 400 Bq m−3, the number of locations to be measured with long-period detectors (etched track detectors) is reduced. In this screening campaign, 34% of the schools surveyed presented at least one site exceeding the 400 Bq m−3 recommended action level established by the EU, and 15% had at least one site with 222Rn values over 800 Bq m−3. The maximum value recorded was 2084 ± 63 Bq m−3. These results are discussed and compared with data obtained in schools of several countries with similar geology. Seven schools were also studied for seasonal variations of 222Rn activity concentration. The results were not conclusive, and no significant correlation between season and 222Rn concentration was established. Finally, a continuous 222Rn concentration monitor was placed in the secondary school exhibiting a mean value of the 222Rn concentration very close to 400 Bq m−3. Maximum 222Rn concentration values were found to occur at times when the school was unoccupied.  相似文献   

20.
In order to better understand the behavior of 210Pb deposition in Far East Asia, comprehensive data of monthly 210Pb deposition, which includes several time-series and spatial distribution data at 14 stations in Japan and 2 stations in Taiwan, were analyzed. Pb-210 deposition at most of the sites exhibited a typical seasonal change with higher values in winter and lower values in summer; especially, the greatest 210Pb deposition in the world occurred in winter at sites beside the Japan Sea. The deposition behavior of 210Pb in Far East Asia differed between winter and summer. The meteorological phenomenon peculiar to winter of the Japan Sea side, i.e., formation of the Japan Sea convergence zone, might cause the high 210Pb concentration in rainwater, as may heavy snowfall. The 210Pb concentration in rainwater showed long-term variability, although this differed between winter and summer. This long-term variability may be related to climatological factors such as El Niño.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号