首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY

The generation, handling, and safe disposal of waste materials has become a major concern in North America. Approval of facilities for waste processing and proper disposal is becoming more difficult to obtain. Furthermore, there is a growing public awareness of the importance of conserving and preserving our valuable natural resources. This expanding awareness has given rise to the trend towards recycling or reuse of awide variety of solid wastes. Experiences with using waste materials in highway construction can vary considerably, depending on material characteristics, construction processes, and climatic differences. A number of waste materials may be suitable for use in highway construction, but others may not. The objective of this paper is introduced in two tasks. The first is to include a survey of the waste materials and by-products that have been used successfully, or may be used, as materials for highway construction or maintenance work. This also includes determination of the state of practice concerning economic and technical factors for these wastes. The second is to rank these materials based on three criteria: number of uses by State agencies, economic uses and performance aspects.  相似文献   

2.

The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electrocatalysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. Photocatalysis produced dihydrogen (H2) with generation rate higher than 100 μmol h−1. Dihydrogen yields ranged from 27 to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.

  相似文献   

3.

Mixed contamination by organic and inorganic compounds in soil is a serious problem for remediation. Most laboratory studies and field-scale trials focused on individual contaminant in the past. For concurrent bioremediation by biodegradation and bioleaching processes, we tested metal-reducing microorganism, Geobacter metallireducens. In order to prove the feasibility of the coupled process, multiple-contaminated soil was prepared. Mineralogical analyses have shown the existence of labile forms of As(V) as amorphous and/or weakly sorbed phases in the secondary Fe oxides. In the biotic experiment using G. metallireducens, biodegradation of toluene and bioleaching of As by bacteria were observed simultaneously. Bacteria accelerated the degradation rate of toluene with reductive dissolution of Fe and co-dissolution of As. Although there have been many studies showing each individual process, we have shown here that the idea of concurrent microbial reaction is feasible. However, for the practical use as a remediation technology, more details and multilateral evaluations are required in future studies.

  相似文献   

4.

Solid wastes from domestic, industrial and agricultural sectors cause acute economic and environmental problems. These issues can be partly solved by anaerobic digestion of wastes, yet this process is incomplete and generates abundant byproducts as digestate. Therefore, cultivating mixotrophic algae on anaerobic digestate appears as a promising solution for nutrient recovery, pollutant removal and biofuel production. Here we review mixotrophic algal cultivation on anaerobic waste digestate with focus on digestate types and characterization, issues of recycling digestate in agriculture, removal of contaminants, and production of biofuels such as biogas, bioethanol, biodiesel and dihydrogen. We also discuss applications in cosmetics and economical aspects. Mixotrophic algal cultivation completely removes ammonium, phosphorus, 17β-estradiol from diluted digestate, and removes 62% of zinc, 84% of manganese, 74% of cadmium and 99% of copper.

  相似文献   

5.
6.
Mercury-containing wastes are hazardous due to the high toxicity and bio-accumulative effect of mercury. Examples of mercury-containing wastes include fluorescent light bulbs, thermostats, and thermometers. Recently, several aqueous-phase methods have been developed to extract mercury from mercury-containing wastes. However, the slow kinetics of mercury recovery limits the application of the aqueous-based technology. Here we designed a method of mercury recovery from a mercuric-thiosulfate solution assisted by ultraviolet photolysis. We evaluated the effect of initial pH, thiosulfate concentration and temperature on ultraviolet photolysis. The precipitation products were characterized by X-ray diffraction and X-ray photoelectron spectroscopy (XPS). Results show a mercury recovery ratio of 87.94% after ultraviolet photolysis during 240 min. We conclude that mercury can be efficiently recovered from mercuric-thiosulfate complex solutions by ultraviolet photolysis.  相似文献   

7.

Conventional methods to clean wastewater actually lead to incomplete treatments, calling for advanced technologies to degrade recalcitrant pollutants. Herein we review solar photo-oxidation to degrade the recalcitrant contaminants in industrial wastewater, with focus on photocatalysts, reactor design and the photo-Fenton process. We discuss limitations due to low visible-light absorption, catalyst collection and reusability, and production of toxic by-products. Photodegradation of refractory organics by solar light is controlled by pH, photocatalyst composition and bandgap, pollutant properties and concentration, irradiation type and intensity, catalyst loading, and the water matrix.

  相似文献   

8.

Polymer materials are vulnerable to damages, failures, and degradations, making them economically unreliable. Self-healing polymers, on the other hand, are multifunctional materials with superior properties of autonomic recovery from physical damages. These materials are suitable for biomedical and tissue engineering in terms of cost and durability. Schiff base linkages-based polymer materials are one of the robust techniques owing to their simple self-healing mechanism. These are dynamic reversible covalent bonds, easy to fabricate at mild conditions, and can self-reintegrate after network disruption at physiological conditions making them distinguished. Here we review self-healing polymer materials based on Schiff base bonds. We discuss the Schiff base bond formation between polymeric networks, which explains the self-healing phenomenon. These bonds have induced 100% recovery in optimal cases.

  相似文献   

9.
Indoor radon has been recognized as one of the health hazards for mankind. Common building materials used for construction of houses, which are considered as one of the major sources of this gas in indoor environment, have been studied for exhalation rate of radon. Non-nuclear industries, such as coal fired power plants or fertilizer production facilities, generate large amounts of waste gypsum as by-products. Compared to other building materials waste gypsum from fertilizer production facilities (phosphogypsum) shows increased rates of radon exhalation. In the present, investigation solid state alpha track detectors, CR-39 plastic detectors, were used to measure the indoor radon concentration and the radon exhalation rates from some building materials used in Egypt. The indoor radon concentration and the radon exhalation rate ranges were found to be 24–55 Bq m−3 and 11–223 mBq m−2 h−1, respectively. The effective dose equivalent range for the indoor was found 0.6–1.4 mSv y−1. The equilibrium factor between radon and its daughters increased with the increase of relative humidity.  相似文献   

10.
Preface     
The combination of bioremediation and electrokinetics, termed bioelectrokinetics, has been studied constantly to enhance the removal of organic and inorganic contaminants from soil. The use of the bioleaching process originating from Fe- and/or S-oxidizing bacteria may be a feasible technology for the remediation of heavy metal–contaminated soils. In this study, the bioleaching process driven by injection of S-oxidizing bacteria, Acidithiobacillus thiooxidans, was evaluated as a pre-treatment step. The bioleaching process was sequentially integrated with the electrokinetic soil process, and the final removal efficiency of the combined process was compared with those of individual processes. Tailing soil, heavily contaminated with Cd, Cu, Pb, Zn, Co, and As, was collected from an abandoned mine area in Korea. The results of geochemical studies supported that this tailing soil contains the reduced forms of sulfur that can be an energy source for A. thiooxidans. From the result of the combined process, we could conclude that the bioleaching process might be a good pre-treatment step to mobilize heavy metals in tailing soil. Additionally, the electrokinetic process can be an effective technology for the removal of heavy metals from tailing soil. For the sake of generalizing the proposed bioelectrokinetic process, however, the site-specific differences in soil should be taken into account in future studies.  相似文献   

11.
In this experimental study, we compared the embryonic respiration rate in air and water of six East African sesarmid species with intertidal, supratidal and arboreal habits, to highlight possible adaptations in embryonic metabolism to their different lifestyles. The embryos of all analysed crabs showed bimodal respiration, but we did not find a trend towards an enhanced embryonic oxygen uptake in air from the intertidal to the arboreal and supratidal species. However, the late-stage embryos of the most land-adapted species, Chiromantes spp., showed an enhanced metabolism when immersed in sea water that we interpreted as an adaptive recovery mechanism to cope with the storage of by-products due to marine-based metabolic pathways during long emersion periods. Thus, we showed that the embryos of land-adapted species, although still strongly water dependent, are well adapted to semi-terrestrial habitats and represent a minor limiting factor for females, which are not restricted in their emersion period by the oxygen requirements of their embryos.  相似文献   

12.
邓孝荣  曾桂生  李卓  李蕾 《环境化学》2012,31(9):1381-1386
考察了接种量、振荡条件、浸出液以及电池原料对氧化亚铁硫杆菌浸出废旧锂离子电池的影响.研究结果表明,浸出10 d,钴浸出率达到48.5%,之后,浸出率不再增加;当接种量在2.5%—12.5%之间时,钴浸出率在第10天都为47.6%,接种量对浸出率无影响;振荡过程中控制温度为35℃时,钴浸出率最佳,并随着振荡速率的升高而增加;浸出液中加入硫磺对浸出影响不大,初始pH值在1.5—2.5范围内,都适合钴酸锂的浸出,而初始亚铁离子浓度在45 g.L-1条件下浸出效果最好;选择固液比为3%最佳,并且钴酸锂粉末的粒度大小对浸出率无影响.  相似文献   

13.
Bioleaching of As from the soil in an abandoned Ag–Au mine was carried out using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. A. ferrooxidans is an iron oxidizer and A. thiooxidans is a sulfur oxidizer. These two microbes are acidophilic and chemoautotrophic microbes. Soil samples were collected from the Myoungbong and Songcheon mines. The main contaminant of the soil was As, with an average concentration of 4,624 mg/kg at Myoungbong and 5,590 mg/kg at Songcheon. A. ferrooxidans and A. thiooxidans generated lower pH conditions during their metabolism process. The bioleaching of As from soil has a higher removal efficiency than chemical leaching. A. ferrooxidans could remove 70 % of the As from the Myoungbong and Songcheon soils; however, A. thiooxidans extracted only 40 % of the As from the Myoungbong soil. This study shows that bioleaching is an effective process for As removal from soil.  相似文献   

14.
Meng  Qingchen  Liu  Hongbo  Zhang  Haodong  Xu  Suyun  Lichtfouse  Eric  Yun  Yunbo 《Environmental Chemistry Letters》2022,20(3):1745-1762

About 1.6 billion tons of food are wasted worldwide annually, calling for advanced methods to recycle food waste into energy and materials. Anaerobic digestion of kitchen waste allows the efficient recovery of energy, and induces low-carbon emissions. Nonetheless, digestion stability and biogas production are variables, due to dietary habits and seasonal diet variations that modify the components of kitchen waste. Another challenge is the recycling of the digestate, which could be partly solved by more efficient reactors of anaerobic digestion. Here, we review the bottlenecks of anaerobic digestion treatment of kitchen waste, with focus on components inhibition, and energy recovery from biogas slurry and residue. We provide rules for the optimal treatment of the organic fraction of kitchen waste, and guidelines to upgrade the anaerobic digestion processes. We propose a strategy using an anaerobic dynamic membrane bioreactor to improve anaerobic digestion of kitchen waste, and a model for the complete transformation and recycling of kitchen waste, based on component properties.

  相似文献   

15.
生物沥浸法去除畜禽粪便中重金属的影响因素研究   总被引:7,自引:1,他引:6  
研究了粪液固体浓度和硫细菌混合菌液接种量对猪粪中重金属生物沥浸的影响。结果表明,猪粪固体浓度越低,重金属沥浸周期越短,沥浸效果越好。从沥浸效果和经济效益2方面综合考虑,固体质量浓度采用70~100 g.L-1较为合适。接种量也是影响生物沥浸的重要因素,试验结果表明,接种量越大,生物沥浸速度越快,但接种量小的粪样只需适当延长沥浸时间即可达到较高的重金属去除效果,2%接种量的猪粪沥浸14 d时,Cu、Zn和Cd沥出率可分别达到76.9%、75.2%和47.8%。从经济角度考虑,接种量采用2%即可满足生物沥浸的需要。  相似文献   

16.

Microplastics have recently become a major environmental issue due to their ubiquitous distribution, uncontrolled environmental occurrences, small sizes and long lifetimes. Actual remediation methods include filtration, incineration and advanced oxidation processes such as ozonation, but those methods require high energy or generate unwanted by-products. Here we tested the degradation of fragmented, low-density polyethylene (LDPE) microplastic residues, by visible light-induced heterogeneous photocatalysis activated by zinc oxide nanorods. The reaction was monitored using Fourier-transform infrared spectroscopy, dynamic mechanical analyser and optical imaging. Results show a 30% increase of the carbonyl index of residues, and an increase of brittleness accompanied by a large number of wrinkles, cracks and cavities on the surface. The degree of oxidation was directly proportional to the catalyst surface area. A mechanism for polyethylene degradation is proposed.

  相似文献   

17.
Abstract

This study introduces the principles of KMG's (Kaoshiung Municipal Government) dealing with the non-poisonous urban and industrial waste through reclamation of shore land in reinforcing a sense of coastal protection and land development in Tai-Lin-Pu coastal area, southern Taiwan.

Through a series of experimental studies, we found that substitutes of coarse aggregate with a broad spectrum of integrating slag powder, fly ash, and cementitious material can be obtained with a benefit up to 80% saving of cement. the integrated aggregates from the non-poisonous industrial wastes were subsequently made into armour units and used in the field tests at Tai-Lin-Pu coastal area, where the shorelines are seriously eroded. After being subjected to several severe typhoon advents, the results showed that the waste-made units used as the protection breakwater, together with construction wastes and excavated soil as the filling material, prove to be an effective practice in utilizing recycled urban waste to reclaim erosive shore lands. Moreover, this study also demonstrates that through detailed analysis of the waste characteristics, scrap material could be turned into valuable construction aggregates, and highlights the value of non-poisonous urban and industrial waste as a alternative resource for the shore protection engineering.  相似文献   

18.

Converting raw biomass into valuable products protects the environment, improves economics, and helps tackle climate change by cutting resource demand and waste production. Thermochemical treatment is a common method for producing biochars, hydrochars and torreficates from biomass and organic wastes, which can also generate dioxins and furans and consequently limit the use of thermochemically converted chars. Here we review the presence of dioxins and furans in chars produced by hydrothermal carbonization, torrefaction, and pyrolysis processes under the influence of temperature, residence time, heating rate, pressure, and feedstock type. Dioxins and furans were mostly below 20 ng total toxic equivalence per kilogram (TEQ kg−1), with the highest level of 113 ng TEQ kg−1 found in over 100 samples of different char types. The most toxic products were hydrochars produced from sewage sludge. Processing temperature and feedstock type were key factors resulting in high dioxin levels in chars, and care should be taken when producing chars at temperatures up to 300 °C or using feedstocks previously contaminated with dioxins or preservatives.

  相似文献   

19.
The technical feasibility of using a suitable sorbent for the removal of some heavy metal ions from their aqueous solutions was investigated. The scope of the work covers the use of low-class native wool or wool wastes from industrial processes or from recycled woolen textiles for the removal of copper, nickel, cobalt, chromium, and zinc ions from their effluents. The sorption efficiency of the aforementioned metals by wool is in the following order: copper?>?cobalt?=?nickel?>?zinc?>?chromium.

The effect of time of sorption, temperature of the effluent, and concentration of metal ions on the rate of sorption was examined. The effect of oxidation or reduction of wool on its sorption power of copper ions is studied. The reduced wool was found to be better than native or oxidised wool in the sorption of copper metal from its effluents. The reuse of wool as metal sorber after elution of the metal, using hydrochloric acid, was also studied. It was found that wool can be reused for sorption after elution of copper up to 25 times of elution; a very limited amount of permanently fixed copper was observed. The use of sufficient woolen layers displays the best way of obtaining an effluent of zero copper content.  相似文献   

20.
Mixed contamination by organic and inorganic compounds in soil is a serious problem for remediation. Most laboratory studies and field-scale trials focused on individual contaminant in the past. For concurrent bioremediation by biodegradation and bioleaching processes, we tested metal-reducing microorganism, Geobacter metallireducens. In order to prove the feasibility of the coupled process, multiple-contaminated soil was prepared. Mineralogical analyses have shown the existence of labile forms of As(V) as amorphous and/or weakly sorbed phases in the secondary Fe oxides. In the biotic experiment using G. metallireducens, biodegradation of toluene and bioleaching of As by bacteria were observed simultaneously. Bacteria accelerated the degradation rate of toluene with reductive dissolution of Fe and co-dissolution of As. Although there have been many studies showing each individual process, we have shown here that the idea of concurrent microbial reaction is feasible. However, for the practical use as a remediation technology, more details and multilateral evaluations are required in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号