首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air samples were collected in an urban and industrialised area of Prato (Italy) during 2002, as part of a study to identify and measure aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). Total concentrations of aliphatic hydrocarbons ranged between 170 and 282ngm(-3) in the gas phase and from 48.9 to 276ngm(-3) in the particulate phase. The average total PAH concentrations (gas+particulate) were 59.4+/-26.5ngm(-3), and both gas and particulate phase PAH concentrations decreased with increasing temperature. Source identification using diagnostic ratios and principal component analysis identified automobile traffic, in particular, the strong influence of diesel fuel burning, as the major PAH source. Gas-particle partition coefficients (K(p)'s) of n-alkane and PAHs were well correlated with the sub-cooled liquid vapour pressure (P(L)(0)) and indicate stronger sorption of PAHs to aerosol particles compared with n-alkanes.  相似文献   

2.
Fang GC  Wu YS  Chen JC  Fu PP  Chang CN  Ho TT  Chen MH 《Chemosphere》2005,60(3):427-433
The concentrations of ambient air polycyclic aromatic hydrocarbons were measured in a farm area (Tunghai University Pastureland) between August 2001 and April 2002 in central Taiwan, Taichung. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on quartz filters, the collected sample was extracted with a dichloromethane (DCM)/n-hexane mixture (50/50, v/v) for 24 h, and then the extracts were subjected to gas chromatography-mass spectrometric analysis. The PM2.5 (fine particulate) and PM2.5-10 (coarse particulate) total PAHs concentrations at the Tunghai University Pastureland sampling site were found to be 180.62 ngm(-3) and 164.98 ngm(-3), respectively. In general, the concentrations of polycyclic aromatic hydrocarbons were higher in spring and winter than those of summer and autumn for either PM2.5 or PM2.5-10 in Pastureland in central Taiwan. Moreover, coarse particulates are the dominant species during the dust storm season (March and April) in central Taiwan.  相似文献   

3.
The presence of polycyclic aromatic hydrocarbons (PAHs) in an urban region (Heraklion, Greece) and processes that govern their atmospheric fate were studied from November 2000 until February 2002. Sixteen samples were collected, by using an artifact-free sampling device, on a monthly basis and the concentration of PAHs in gas and particulate phase was determined. The most abundant members (gas + particles) were phenanthrene (20.0+/-7.0 ng m(-3)), fluoranthene (6.5+/-1.7 ng m(-3)), pyrene (6.6+/-2.4 ng m(-3)), and chrysene (3.1+/-1.5 ng m(-3)). Total concentration (gas+particulate) of PAH ranged from 44.3 to 129.2 ng m(-3), with a mean concentration of 79.3 ng m(-3). Total concentration of PAHs in gas phase ranged from 31.4 to 84.7 ng m(-3) with non-observable seasonal variation. Conversely, maximum PAH concentrations in the particulate phase occurred during winter months. Particulate concentration varied from 11.4 to 44.9 ng m(-3), with an average of 25.2 ng m(-3). PAH distribution between gas and particulate phase was in agreement with the sub-cooled vapor pressure. Shift in gas/particle distribution due to difference in ambient temperature elucidated to some extent the seasonal variation of the concentration of PAHs in particles.  相似文献   

4.
A fine particulate matter (PM2.5) sampling program was conducted in Missoula, MT, to investigate both the particle and vapor phases of PM2.5-associated polycyclic aromatic hydrocarbons (PAHs) found in a northern Rocky Mountain urban airshed. Twenty-four-hour samples were collected during the cold winter months of January through April 2002, when many of the more volatile organic components of PM2.5 were expected to be found in the condensed particle form. To meet analytical detection limits, each of the 12 individual sample days were aggregated into four total filter and polyurethane foam (PUF) samples, respectively, with each aggregate containing 3 sample days. Quartz filter (particle-phase PAHs) and PUF (vapor-phase PAHs) aggregates were analyzed separately for 18 individual PAHs and phenolics by gas chromatography/mass spectrometry. Results showed that 87% of the PM2.5-associated phenolics and PAHs measured in this study were found in the vapor phase. PM2.5-associated gas/particle partition coefficients (Kp,2.5) ranged from 0 for the lighter phenolics and PAHs to approximately 0.1 for some of the heavier PAHs, such as fluoranthene and pyrene. Calculating Kp,2.5 for the heaviest measured PAHs was not feasible because of low or undetectable concentrations in the vapor phases of these compounds. Phenolics and two-ringed and three-ringed PAHs were found almost exclusively in the vapor phase. Four-ringed PAHs were distributed between the particle and vapor phases, with more mass measured in the vapor phase. Very little five-ringed and higher PAHs were measured from either the filter or PUF sampling medium. These results provide information on both the concentrations and different phases of PM2.5-associated PAHs measured during the winter months in a northern Rocky Mountain urban airshed, when concentrations of PM2.5 are generally at their highest compared with the rest of the year.  相似文献   

5.
Liu YN  Tao S  Dou H  Zhang TW  Zhang XL  Dawson R 《Chemosphere》2007,66(10):1922-1928
Exposure of on-duty traffic police in Beijing to polycyclic aromatic hydrocarbons (PAHs) was investigated during the summer, 2004 using a personal sampling technique in measuring both particulate and gaseous phase PAHs. The results were then compared with those from two control sites away from the street. Exposure levels to gaseous and particulate PAHs for the traffic police were found to be 1525 +/- 759 ngm(-3) and 148 +/- 118 ngm(-3), respectively, representing 2-2.5 times higher levels than those at the control sites. The daily inhalation exposure of the police was estimated to be 277 ngkg(-1)d(-1). Most of the PAHs exposure came from the vapor phase, particularly NAP, FLO and PHE. Based on calculated PAH diagnostic ratios, the major source of PAHs exposure was from vehicle exhaust. The effects of temperature, humidity and atmospheric stability on exposure levels are also discussed.  相似文献   

6.
The aim of the present study is to identify and quantify the main sources of polycyclic aromatic hydrocarbons (PAHs) associated with aerosols (PM10) collected at three different sampling stations: 8° Distrito, CEASA and Charqueadas. The samples were collected between November 2001 and November 2002, and the concentrations of 16 major PAHs were determined according to EPA. The filters containing particulate matter were extracted with dichloromethane in Soxhlet and the extracts were later analysed in a gaseous chromatograph coupled to a mass spectrometer (GS/MS). The average concentrations of PAHs ranged between 0.04 and 2.30 ng m−3. The analysis of principal components was applied to the chemical and meteorological variables in order to facilitate the identification of sources of PAHs emission into the atmospheric particulate. The study identified the following sources of PAHs: vehicular emissions, such as diesel oil, petrol, alcohol, and kerosene; industrial emissions, like lubricating oils; emissions from hospital waste burning, and coal burning at power plants.  相似文献   

7.
The concentrations of trace metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed to total suspended particulate (TSP) and finer fractions of airborne particulate matter (PM) were determined from a site in the centre of Athens (Greece), which is characterized by heavy local traffic and is densely populated, during the winter and summer periods in 2003-2004. Also, we collected and analyzed samples of diesel and gasoline exhaust particles from local vehicles (buses, taxis and private cars) and from chimney exhaust of residential central heating appliances. A seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. The most commonly detected trace metals in the TSP and PM fractions were Fe, Pb, Zn, Cu, Cr, V, Ni and Cd and their concentrations were similar to levels observed in heavily polluted urban areas from local traffic and other anthropogenic emissions. Analysis of 16 PAHs bound to PM showed that they are mostly traffic related. In general, the fine particulate PAHs concentrations were higher than coarse particles. The most common PAHs in PM(10.2) and PM(2.1) were pyrene, phenanthrene, acenapthylene and fluoranthene, which are associated with diesel and gasoline exhaust particles. The results of this study underlined the importance of local emission sources, especially vehicular traffic, central heating and other local anthropogenic emissions. Compared with other big cities, Athens has much higher levels of airborne particles, especially of the finer fractions PM(10) and PM(2.5), correlated with traffic-related air pollution.  相似文献   

8.
Abstract

A fine particulate matter (PM2.5) sampling program was conducted in Missoula, MT, to investigate both the particle and vapor phases of PM2.5-associated polycyclic aromatic hydrocarbons (PAHs) found in a northern Rocky Mountain urban airshed. Twenty-four-hour samples were collected during the cold winter months of January through April 2002, when many of the more volatile organic components of PM2.5 were expected to be found in the condensed particle form. To meet analytical detection limits, each of the 12 individual sample days were aggregated into four total filter and polyurethane foam (PUF) samples, respectively, with each aggregate containing 3 sample days. Quartz filter (particle-phase PAHs) and PUF (vapor-phase PAHs) aggregates were analyzed separately for 18 individual PAHs and phenolics by gas chromatography/mass spectrometry. Results showed that 87% of the PM2.5-associated phenolics and PAHs measured in this study were found in the vapor phase. PM2.5-associated gas/particle partition coefficients (Kp,2.5) ranged from 0 for the lighter phenolics and PAHs to ~0.1 for some of the heavier PAHs, such as fluoranthene and pyrene. Calculating Kp,2.5 for the heaviest measured PAHs was not feasible because of low or undetectable concentrations in the vapor phases of these compounds. Phenolics and two-ringed and three-ringed PAHs were found almost exclusively in the vapor phase. Four-ringed PAHs were distributed between the particle and vapor phases, with more mass measured in the vapor phase. Very little five-ringed and higher PAHs were measured from either the filter or PUF sampling medium. These results provide information on both the concentrations and different phases of PM2.5-associated PAHs measured during the winter months in a northern Rocky Mountain urban airshed, when concentrations of PM2.5 are generally at their highest compared with the rest of the year.  相似文献   

9.
Air samples of particulate matter (PM) with an aerodynamic diameter less than 10 microm (PM10) were collected from six sites in Bangkok, Thailand, using high-volume air samplers. Daily samples were taken at intervals of 12 days from November 1999 to November 2000. Size-selected sampling using a multislit Andersen size-fractionated cascade impactor was undertaken at one site in central Bangkok to identify particulate size distribution. The annual average PM10 concentration at all six sites exceeded the Thailand National Ambient Air Quality Standard (NAAQS) of 50 microg/m3. The daily PM10 concentrations at heavy traffic roadside areas ranged between 30 and 160 microg/m3. The highest PM10 level occurred during the winter period (November-February), which is the dry season. From our results, which are based on a 1-yr survey, it can be observed that the particulate concentrations are associated with traffic volumes and seasonal factors (temperature and rainfall). The relative importance of size fractions in contributing to PM load is presented and discussed. Twenty polycyclic aromatic hydrocarbons (PAHs) associated with PM have been identified and quantified. The summed PAHs based on the 20 species had an average concentration of 60 ng/m3. Benzo(e)pyrene, indeno(123cd)pyrene, and benzo(ghi)perylene were the major compounds with average concentrations of 8, 10, and 13 ng/m3, respectively. Results indicate that more than 97% of PAHs were found in the small particulate size range of <0.95 microm.  相似文献   

10.
Olivella MA 《Chemosphere》2006,63(1):116-131
Fourteen polycyclic aromatic hydrocarbons (PAHs) were measured in surface waters and precipitation inputs to Lake Maggiore, a subalpine lake in Northern Italy, from July 2003 to January 2004. Particulate and dissolved phases in surface water and rain samples were determined. Analyses of PAHs were performed using XAD-2 resin to isolate the dissolved PAHs and subsequent extraction by accelerated solvent extraction (ASE). Both the dissolved and particulate phase PAH patterns in surface water and rainwater samples were dominated by the low molecular weight compounds (e.g., phenanthrene, fluoranthene and pyrene). More than 85% of PAHs in surface waters and 72% of PAHs in rainwater were associated to the dissolved phase. The SigmaPAH concentrations in surface waters (particulate and dissolved phases) were 0.584 +/- 0.033 ng l(-1), 2.9 +/- 0.312 ng l(-1) and in rainwater (particulate and dissolved phases) 27.5 +/- 2 ng l(-1), 75.4 +/- 9 ng l(-1), respectively. Temporal variability of PAH concentrations in rain and surface water samples were observed, with higher concentrations in November and December, coinciding with the largest precipitation amounts. The comparison of PAH signatures in rainwater and surface waters seems to indicate that wet deposition (2.5-41 microg m(-2) month(-1)) is the main source of PAH contamination into surface waters of Lake Maggiore.  相似文献   

11.
The sizes and concentrations of 21 atmospheric polycyclic aromatic hydrocarbons (PAHs) were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan in October and December 2005. Air samples were collected using semi-volatile sampling trains (PS-1 sampler) over 16 days for rice-straw burning and nonburning periods. These samples were then analyzed using a gas chromatograph with a flame-ionization detector (GC/FID). Particle-size distributions in the particulate phase show a bimode, peaking at 0.32-0.56 microm and 3.2-5.6 microm at the two sites during the nonburning period. During the burning period, peaks also appeared at 0.32-0.56 microm and 3.2-5.6 microm at Jhu-Shan, with the accumulation mode (particle size between 0.1 and 3.2 microm) accounting for approximately 74.1% of total particle mass. The peaks at 0.18-0.32 microm and 1.8-3.2 microm at Shin-Gang had an accumulation mode accounting for approximately 70.1% of total particle mass. The mass median diameter (MMD) of 3.99-4.35 microm in the particulate phase suggested that rice-straw burning generated increased numbers of coarse particles. The concentrations of total PAHs (sum of 21 gases + particles) at the Jhu-Shan site (Sin-Gang site) were 522.9 +/- 111.4 ng/ml (572.0 +/- 91.0 ng/ml) and 330.1 +/- 17.0 ng/ml (or 427.5 +/- 108.0 ng/ml) during burning and nonburning periods, respectively, accounting for a roughly 58% (or 34%) increase in the concentrations of total PAHs due to rice-straw burning. On average, low-weight PAHs (about 87.0%) represent the largest proportion of total PAHs, followed by medium-weight PAHs (7.1%), and high-weight PAHs (5.9%). Combustion-related PAHs during burning periods were 1.54-2.57 times higher than those during nonburning periods. The results of principal component analysis (PCA)/absolute principal component scores (APCS) suggest that the primary pollution sources at the two sites are similar and include vehicle exhaust, coal/wood combustion, incense burning, and incineration emissions. Open burning of rice straw was estimated to contribute approximately 5.0-33.5% to the total atmospheric PAHs at the two sites.  相似文献   

12.
Along 10 campaigns, from June 2002 to September 2004, the concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were measured in sediments and oysters (Crassostrea sp.) taken from four sites in the Unesco protected natural reserve of Urdaibai (Basque Country, Bay of Biscay). Total PAH concentration ranged from 0.7 to 140 microg kg(-1) (dw) in the case of sediments, and from 300 to 1400 microg kg(-1) (dw) in the case of oysters. During this study, the coast of the Bay of Biscay was severely affected by the Prestige oil spill (November 2002). Presumably, as a consequence of this accident, both spatial and temporal variations of the PAHs, as well as the sources of the PAHs were affected by the oil spill, and this effect was observed in the total concentrations and, especially, in several diagnostic ratios and in multivariate data analysis. Finally, both BAF (bioaccumulation factor) and BSAF (biota-sediment accumulation factor) parameters were calculated to conclude that particulate matter seems to be the most favourable uptake pathway of PAHs in oysters from this estuary.  相似文献   

13.
Water, suspended particulate matter (SPM), and sediment samples were collected from ten rivers in Tianjin and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), dissolved organic carbon (DOC), particulate organic carbon (POC) in SPM and total organic carbon (TOC) in sediment. The behavior and fate of PAHs influenced by these parameters were examined. Generally, organic carbon was the primary factor controlling the behavior of the 16 PAH species. Partitioning of PAHs between SPM and water phase was studied, and K(OC) for some PAH species were found to be significantly higher than the predicted values. The source of PAHs contamination was diagnosed by using PAH isomer ratios. Coal combustion was identified to be a long-term and prevailing contamination source for sediment, while sewage/wastewater source could reasonably explain a short-term PAHs contamination of SPM.  相似文献   

14.
Guo W  He M  Yang Z  Lin C  Quan X  Wang H 《Chemosphere》2007,68(1):93-104
This study investigated the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water, suspended particulate matter (SPM) and sediment of Daliao River watershed composed of the Hun River, Taizi River, and Daliao River. The sources of PAHs were evaluated employing ratios of specific PAHs compounds and principal component analysis (PCA). The total concentrations of PAHs ranged from 946.1 to 13448.5 ng l(-1) in surface water, from 317.5 to 238518.7 ng g(-1) dry weight in SPM, and from 61.9 to 840.5 ng g(-1) dry weight in sediments. The levels of PAHs are relatively higher in water and SPM, and lower in sediments, in comparison with those reported for other rivers and marine systems around the world. The composition of PAHs in these mediums was mainly 4-6 rings PAHs. The higher contents of low molecular weight PAHs in the water and SPM suggest a relatively recent local source of PAHs, entered into the river via wastewater discharge and atmospheric way. On the other hand, the heavy pollution of PAHs in sediment and water near heavy industrial area suggests that PAHs have been released from industrial wastewater.  相似文献   

15.
The Po Valley is the most important agricultural and industrial area of Adriatic basin. In this area there are several rivers which transport polycyclic aromatic hydrocarbons (PAHs) into the sea via suspended particulate matter. This study describes the persistence of PAHs in the deep and coastal sediments of the Northern Adriatic. Different environmental conditions were studied: salinity, temperature, sunlight, sediment particle size and organic matter in sediment. The average conditions in the deep areas of the Northern Adriatic are: salinity higher than 37, temperature lower than 11 °C, darkness and clayey sediments with a high organic matter content. These conditions increase the persistence of the PAHs in the deep area of the Northern Adriatic.  相似文献   

16.
Fang GC  Wu YS  Fu PP  Yang IL  Chen MH 《Chemosphere》2004,54(4):443-452
The concentrations of gas-phase and particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously at an industrial area (Taichung Industrial Park) and a suburban area (Tunghai University Campus) in Taichung, Taiwan. Twenty-four hours samplings for two consecutive days were performed between August and December 2002 at both sampling sites. Ambient air particle-bound PAHs were collected on quartz filters and gas-phase PAHs were collected on glass cartridges using a PUF Sampler, respectively. Both types of samples were extracted with a DCM/n-hexane mixture (50/50, v/v) for 24 h, then the extracts were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. Total PAHs concentrations at the Taichung Industrial Park (TIP) sampling site and the Tunghai University Campus (THUC) sampling site were found to be 1232.3+/-963.6 and 609.8+/-356.3 ng/m(3), respectively. Stationary combustion processes were mainly responsible for PAHs sources at the TIP sampling site, while traffic vehicle exhaust was the largest contributor for PAHs sources at the THUC sampling site.  相似文献   

17.
The distribution of air particulate mass and selected particle components (trace elements and polycyclic aromatic hydrocarbons (PAHs)) in the fine and the coarse size fractions was investigated at a traffic-impacted urban site in Thessaloniki, Greece. 76±6% on average of the total ambient aerosol mass was distributed in the fine size fraction. Fine-sized trace elemental fractions ranged between 51% for Fe and 95% for Zn, while those of PAHs were between 95% and 99%. A significant seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. Similar seasonal trend was exhibited by PAHs, whereas larger fine fractions in summer were shown by trace elements. The compositional signatures of fine and coarse particle fractions were compared to that of local paved-road dust. A strong correlation was found between coarse particles and road dust suggesting strong contribution of resuspended road dust to the coarse particles. A multivariate receptor model (multiple regression on absolute principal component scores) was applied on separate fine and coarse aerosol data for source identification and apportionment. Results demonstrated that the largest contribution to fine-sized aerosol is traffic (38%) followed by road dust (28%), while road dust clearly dominated the coarse size fraction (57%).  相似文献   

18.
Fang GC  Wu YS  Chang CN  Ho TT 《Chemosphere》2006,64(7):1233-1242
Fine (PM(2.5)) and Coarse (PM(2.5-10)) particulates concentrations of ambient air particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously from February 2004 to January 2005 at the Taichung Harbor (TH) sampling site near Taiwan of central Taiwan. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on quartz filters, the collected sample used soxhlet analytical method extracted with a dichloromethane (DCM)/n-hexane mixture (50/50, v/v) for 24h, and then the extracts were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. The results indicated that vehicle emissions, coal combustion, incomplete combustion and pyrolysis of fuel and oil burning were the main source of PAHs near Taiwan Strait of central Taiwan. Diagnostic ratio and principal component analysis (PCA) were also used to characterize and identify PAHs emission source in this study.  相似文献   

19.
Ambient air and deposition samples were collected in the period of July 2004-May 2005 in an industrial district of Bursa, Turkey and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds. The overall average of fourteen bulk deposition fluxes for PAHs was 3300+/-5100 ng m(-2) d(-1). PAH depositions showed a seasonal variation and they were higher in winter months. This was probably due to increases in residential heating activities and decreases in atmospheric mixing layer levels. Ambient air samples, measured with a high volume air sampler, were collected from the same site. The average total concentration including gas and particulate phase was about 300+/-420 ng m(-3) and it was in the range of previously reported values. Some of the ambient air and bulk deposition samples were collected simultaneously in dry periods. Both concurrently measured values were used to calculate the dry deposition velocities whose overall average value was 0.45+/-0.35 cm s(-1).  相似文献   

20.
In this study, plates for downward flux and upward flux were used to measure atmospheric dry deposition fluxes for particulate mass and polycyclic aromatic hydrocarbons (PAHs) in TERC (Tsukuba), Japan. Ambient particles concentrations were also collected using a high-volume air sampler, and ambient particle size distributions between 0.01 μm and 13.1 μm were measured using a low-pressure cascade impactor to characterise the PAHs levels and dry deposition. The results indicated that the average cumulative fraction of dry deposition flux for particles and PAHs which attached with them was caused by the particle size of greater than 1.2-6.3 μm (97%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号