首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 718 毫秒
1.
为了分析瓦斯与煤自燃多场耦合致灾特性,结合瓦斯抽采引起的采空区混合气体流动、气体组分渗流与采空区渗透率变化、固气两相热量传输等多物理过程,建立了基于综放采空区高位钻孔瓦斯抽采的热-流-化多场耦合数学模型,采用COMSOL软件模拟了综放采空区高位钻孔抽采瓦斯诱导煤自燃过程,阐明了瓦斯与煤自燃多场耦合致灾机理,得到了寸草塔二矿31102综放采空区氧化带范围与高温范围,并探讨了抽采强度对综放采空区氧浓度场与温度场的影响。研究结果表明:高位钻孔抽采瓦斯有效地降低了回风巷瓦斯浓度,保证了31102综放工作面安全高效回采。增大综放采空区高位钻孔抽采瓦斯强度不能保证煤自燃安全性,二者存在矛盾,在得到高效抽采瓦斯的同时,会造成进风侧氧化带宽度增加,采空区氧化带边界向深处蔓延,扩大煤自燃高温区域,漏风携氧充分的参与煤氧复合反应,采空区最高温度逐渐上升,煤自燃风险增大。  相似文献   

2.
漏风对煤自燃有重要影响,研究漏风形成机制对工作面采空区防火具有重要的作用。针对采空区瓦斯抽采、上覆围岩裂隙发育对采空区漏风影响问题,以沙曲矿沿空留巷综放工作面为研究背景。根据采空区上覆煤岩特性选择经验公式计算采空区裂隙发育高度,分析了沿空留巷侧采空区上覆裂隙发育,现场实测了沿空留巷压埋管及高位钻孔中气体体积分数,并根据实测参数利用数值模拟分析了瓦斯抽采条件下采空区风流流场变化。结果表明:上覆裂隙成为采空区漏风通道,导通距离在27.2~37.2 m;在沿空留巷侧采空区回采距离100m,其氧气体积分数在10%以上,验证了采空区漏风去向;模拟结果显示,沿空留巷侧采空区立体空间范围内氧气体积分数均达到10%以上,模拟结果与实测基本保持一致。最终确定瓦斯抽采条件下沿空留巷的布置及煤岩裂隙发育是形成漏风通道的主要原因。  相似文献   

3.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

4.
为了研究和解决西铭矿在生产中由于瓦斯抽采方法的不同可能引起采空区自燃以及瓦斯爆炸等重大安全隐患问题,构建了高位巷、埋管和高低位钻孔瓦斯抽采方法下的非均质多孔介质三维模型。利用非线性渗流定律、通用控制方程和自定义的函数进行解算,结果表明:高位巷、高低位钻孔抽采流量与抽采氧气浓度近似呈正比函数关系,埋管抽采流量与氧化带宽度呈指数函数关系;高位巷、高低位钻孔随着抽采流量的增加抽采效率反而降低,抽采总量增加,埋管抽采位置在距工作面35m处、抽采流量为20m3/min能很好解决上隅角瓦斯超限问题。根据模拟结论:采用立体联合瓦斯抽采方法既能满足抽采要求又能有效控制采空区自燃现象。  相似文献   

5.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

6.
为了研究“U+I”型工作面进风量和顶板巷抽采负压对工作面瓦斯浓度与采空区氧化带宽度的影响,协调瓦斯抽采和浮煤自燃之间的关系。以2306综放面为工程背景,基于“U”型冒落岩层孔隙率分布公式和流体通用控制方程建立采空区数值模拟解算模型。采用CFD软件对不同进风量、不同抽采负压下的工作面瓦斯浓度和采空区氧化带宽度进行模拟,结果表明:随着工作面风量的增加,工作面和顶板巷瓦斯浓度减小,但工作面处浓度减幅逐渐变小而顶板巷浓度减幅几乎不变;提高顶板巷抽采负压,对减少工作面瓦斯浓度效果明显,顶板巷自身瓦斯浓度先增加再减小,采空区进风侧氧化带宽度变窄,回风侧和采空区中部氧化带宽度增加,总体上增加了采空区浮煤自燃的危险性但影响程度有限。  相似文献   

7.
为研究抽放采空区瓦斯对采空区内部流场的影响,基于采空区渗流理论,建立相似材料模型。用该模型模拟未采取瓦斯抽放措施,埋管抽放,瓦斯尾巷抽放,高抽巷抽放4种条件下采空区流场分布状态,结合采空区瓦斯治理与自然发火的耦合关系,探讨采取抽放措施对遗煤自燃的影响,确定影响区域。结果表明,埋管抽放、瓦斯尾巷抽放与高抽巷抽放3种措施都会增大采空区漏风,加大采空区自然发火的危险性和治理难度,在采取抽放措施时应特别注意高抽巷抽放口位置。  相似文献   

8.
为解决某综放面采用顶板巷与上隅角联合抽采方式可能引起的煤自燃及瓦斯爆炸等重大安全隐患问题,采用数值模拟从瓦斯、氧气体积分数分布特点和温度场角度综合分析合理顶板巷位置与抽采流量,为协同预防瓦斯和煤自燃复合灾害提供指导。结果表明:抽采口、上隅角瓦斯体积分数随抽采流量增加而降低;抽采流量100m3/min是影响氧化带宽度变化幅度的拐点;抽采流量对采空区最高温度的影响较大,对高温范围宽度影响较小;综合确定合理顶板巷位置为内错回风巷15 m,合理抽采流量为100~150 m~3/min;现场应用表明该方案既能解决瓦斯超限问题,又能有效控制煤自燃威胁,表明数值模拟具有较好的可靠性。  相似文献   

9.
为了实现瓦斯与煤自燃两大灾害的联合防治,首先对布置高抽巷条件下瓦斯与遗煤自燃多因素相互影响关系进行了理论分析和归纳总结。结合淮南潘二煤矿11223高瓦斯易自燃工作面,建立了带有高抽巷的物理模型,利用UDF编译了本煤层与邻近层瓦斯涌出源项、采空区三维孔隙率和低温条件下煤氧化反应氧气消耗速率。在此基础上,分析了高抽巷布置参数和抽采参数以及工作面风量对高抽巷瓦斯抽采效果和采空区自燃带分布相互影响的规律。结果表明,当工作面风量为2 000 m3/min,高抽巷布置在顶板上方40 m时,高抽巷瓦斯抽采浓度和纯量分别达32.3%和29.07 m3/min,占总瓦斯涌出量的69.71%,同时能满足实际防火的要求。研究结果可为类似条件下高抽巷最佳施工与抽采参数提供借鉴。  相似文献   

10.
针对高抽巷抽采瓦斯可能诱发的采空区自燃问题,以大佛寺煤矿40108工作面构建采空区气体渗流模型,分析了不同垂距和平距下高抽巷抽采瓦斯时对采空区自燃危险性的影响。结果表明:高抽巷与煤层顶板的垂距越大,氧化升温带的宽度越大,采空区自燃危险性越高。高抽巷距回风巷平距为30m时,氧化升温带的宽度最小,采空区自燃危险性最低。依据研究结论,结合高抽巷抽采瓦斯时的层位要求,分析得出大佛寺煤矿40108工作面高抽巷最佳位置为距煤层顶板垂距30m,距回风巷平距30m处。  相似文献   

11.
炮采放顶煤采空区自然发火的数值模拟应用   总被引:1,自引:0,他引:1  
针对炮采放顶煤开采采空区容易发生自燃问题,基于漏风渗流方程、气体渗流一扩散-氧消耗方程,建立了采空区自然发火非稳定数值模型,采空区按非均质考虑,耗氧汇按煤矸氧化和瓦斯涌出稀释两方面综合考虑,用有限元数值方法联立求解模型。结合羊草沟矿实例,通过该矿自然发火后来的测试区的现场实测结果,拟合反演得到采空区煤的耗氧速度、瓦斯涌出强度和渗透特征参数,用确定的模型分析了前段出现自然发火的原因;描绘了炮采放顶煤开采时采空区冷却带、自燃带和窒息带等三带的形状,指出冒落压实的不均衡的非均质采空区,自燃点在偏人风一侧。用三带划分理论讨论了工作面参数(风量、推进度、控顶距)同自燃的量化关系,提出了从根本上预防采空区自然发火的途径与方法。  相似文献   

12.
为探究热场对深部倾斜采空区煤自燃区域划分的影响,通过对采场空隙结构和耗氧速率进行分析,利用Fluent软件模拟不同通风方式下热环境对采空区流场及自燃带影响。结果表明:受倾角工作面、采空区空隙率及地温梯度综合影响,下行冷风与受采空区浮升力作用的热风在工作面中下部汇合并涌向工作面,使工作面局部温度升高;上行通风方式采空区蓄热范围大于下行风,回风侧温度更高;上行通风自燃带进风侧范围25~40 m,回风侧范围21~52 m;下行通风自燃带进风侧范围15~40 m,回风侧范围15~24 m;结合工作面实测参数,上行风回风侧自燃带范围19~47 m,与实际误差较小。研究结果可为倾角采空区热场条件对自燃带划分影响分析提供参考。  相似文献   

13.
浅埋近距离煤层内错布置开采下部煤层时,地表裂隙易与复合采空区相互贯通,造成地表漏风,使采空区,特别是上部老采空自燃危险区域的分布难以预测。针对此问题,以酸刺沟煤矿6上109工作面至地表空间为研究对象,在漏风测定及束管监测的基础上,建立地表与复合采空区漏风模型,借助FLUENT数值模拟软件,研究地表漏风对复合采空区自燃危险区域的影响。研究表明,地表漏风最终汇入下部采空区回风侧,加大了其自燃危险区域范围;漏风流在向回风侧偏移的过程中,由于煤柱的阻挡,风速逐渐降低,与下部漏入的风流共同作用,使上部老采空区形成了氧浓度中间低四周高的不规则环状自燃危险区域;下部采空区进风侧向上的漏风增加了本煤层采空区的总漏风量,加大了其自燃危险区域宽度,同时增加了上部老采空区局部氧浓度,使其自燃危险性增大。  相似文献   

14.
Y形通风采空区自燃与有害气体排放的数值模拟   总被引:1,自引:0,他引:1  
基于非均质多孔介质漏风渗流方程、多相气体渗流-扩散方程和多孔介质渗流综合传热方程,建立了采空区瓦斯与自燃发火耦合数值模型,开发了用迎风格式有限元方法联立求解的计算机程序(简称G3).计算以图形方式给出各量的区域分布解,从理论上描绘了Y形通风采空区的漏风流态,动态描绘了瓦斯、氧和CO的体积分数以及温度分布状态及其变化过程,并证明了Y形通风形式能避免采空区瓦斯向工作面涌出.计算中采空区按冒落非均质介质处理,考虑了瓦斯涌出对自燃的耦合作用,给出了这种耦合作用关系和解决办法.Y形通风采煤的自燃,两者存在着顾此失彼的关系.  相似文献   

15.
针对高危自燃采空区遗留煤发生自燃问题,提出采空区亚自燃状态的概念.开采推进过程中的采空区自燃,都可理解为是从亚自燃状态向自燃状态转化的结果,且其转化过程时间很短,小于最短自然发火期.在不同条件下的自燃过程满足叠加组合原理,采空区亚自燃状态向自燃转化过程是两种以上过程的叠加.转化受亚自燃状态程度(稳定温度)、工作面推进度、漏风供氧、煤堆积状态及防灭火措施(注氮)等因素影响.亚自燃状态理论能够解释生产实践中一旦某一不利因素出现,能在短时间内导致自燃发生的现象(自燃突发性).亚自燃状态概念的提出,将有助于从理论上正确认识实际采空区自燃状态的演变过程,实现早期预防采空区自燃的发生.  相似文献   

16.
为准确预测高瓦斯采空区煤自燃的状况,通过分析发现高抽巷是监测采空区遗煤自然发火的最有效地点。推算出采空区气体在高抽巷中所占的体积分数,进而确定采空区遗煤不同的燃烧阶段所对应的CO体积分数和CO指数。结果表明:当高抽巷中的CO体积分数Chdr CO<30×10-6或CO指数ICO<0.5%时,采空区的遗煤处于低温氧化阶段;当高抽巷中的CO体积分数Chdr CO≥30×10-6或CO指数ICO≥0.5%时,采空区遗煤进入自然发火危险阶段,此时必须采取措施控制采空区自燃氧化的进一步发展。对80501工作面的采空区煤自燃成功地进行预测预报,实现了安全生产。  相似文献   

17.
采空区遗煤自燃过程及其规律的数值模拟研究   总被引:16,自引:5,他引:16  
基于非均质多孔介质中的连续性方程、多相气体渗流———扩散方程和综合传热方程,建立了工作面动态推进下的采空区自燃数值模型。结合实例,从理论上描绘了工作面开采过程中采空区的漏风流态、氧、CO、瓦斯和温度等分布状态及其动态过程。计算中考虑了瓦斯涌出对自燃的耦合作用;工作面动态推进对自燃的影响,以及沿边界冒落非压实性对漏风供氧、自燃高温区产生的影响。从理论上重点讨论了采空区自燃与各因素的定量化关系,得出自然发火期与煤氧化速度、工作面风量二者均呈显著的反比例关系;对于综放工作面采场漏风供氧系统,自然发火期主要取决于煤的耗氧能力,提高工作面风量仅能扩大自燃高温区的范围,增大自燃的发生几率;提高推进度能显著延长采空区自然发火期,呈指数变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号