首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
安全科学   3篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
为了实现瓦斯与煤自燃两大灾害的联合防治,首先对布置高抽巷条件下瓦斯与遗煤自燃多因素相互影响关系进行了理论分析和归纳总结。结合淮南潘二煤矿11223高瓦斯易自燃工作面,建立了带有高抽巷的物理模型,利用UDF编译了本煤层与邻近层瓦斯涌出源项、采空区三维孔隙率和低温条件下煤氧化反应氧气消耗速率。在此基础上,分析了高抽巷布置参数和抽采参数以及工作面风量对高抽巷瓦斯抽采效果和采空区自燃带分布相互影响的规律。结果表明,当工作面风量为2 000 m3/min,高抽巷布置在顶板上方40 m时,高抽巷瓦斯抽采浓度和纯量分别达32.3%和29.07 m3/min,占总瓦斯涌出量的69.71%,同时能满足实际防火的要求。研究结果可为类似条件下高抽巷最佳施工与抽采参数提供借鉴。  相似文献   
2.
为了有效预防遗煤自燃,深入研究自然发火初期的CO预测技术。基于回风隅角CO源的理论模型,以Gambit建立相似二维采场模型,数值模拟了采空区自燃“三带”范围,并采用现场束管监测手段对结果进行了验证。利用程序升温实验获得了不同温度段回风隅角CO的极限指标,并与现场实测值对比分析,进而预判采空区遗煤发火程度,为制定有针对性的防治措施提供理论指导。研究结果表明:CO作为低温氧化阶段预测指标对预防遗煤自燃具有重要作用。  相似文献   
3.
为揭示CO在烟煤中的微观吸附和扩散机理,利用Wiser烟煤分子模型,通过巨正则蒙特卡洛(GCMC)和分子动力学方法,研究5种不同温度(293.15,303.15,313.15,323.15,333.15 K)下,压力为0.1~3.0 MPa时CO吸附量、吸附热的变化,采用能量分布分析CO在烟煤中的吸附行为,利用扩散系数和扩散活化能研究CO在烟煤中的扩散特性。研究结果表明:CO在烟煤分子中的模拟结果符合朗格缪尔(Langmuir)吸附规律,随着温度的升高,Langmuir参数a和b减小,CO在烟煤分子中饱和吸附量和吸附能力降低。温度越高,烟煤分子的等量吸附热越低,烟煤分子吸附CO分子的平均等量吸附热为21.20~23.11 kJ/mol,小于42 kJ/mol,属于物理吸附;随着压力的升高,CO分子由能量较高的优势吸附位点逐渐向相对较弱的吸附位点移动;在模拟的温度和压力条件下,CO在烟煤分子模型中的扩散系数随温度和压力的升高而增加,扩散活化能随压力的升高而减小。研究结果为揭示CO在烟煤分子中微观吸附与扩散规律,准确预测采空区封闭火区煤自燃情况具有重要意义。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号