首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract:  Organisms respond to their surroundings at multiple spatial scales, and different organisms respond differently to the same environment. Existing landscape models, such as the "fragmentation model" (or patch-matrix-corridor model) and the "variegation model," can be limited in their ability to explain complex patterns for different species and across multiple scales. An alternative approach is to conceptualize landscapes as overlaid species-specific habitat contour maps. Key characteristics of this approach are that different species may respond differently to the same environmental conditions and at different spatial scales. Although similar approaches are being used in ecological modeling, there is much room for habitat contours as a useful conceptual tool. By providing an alternative view of landscapes, a contour model may stimulate more field investigations stratified on the basis of ecological variables other than human-defined patches and patch boundaries. A conceptual model of habitat contours may also help to communicate ecological complexity to land managers. Finally, by incorporating additional ecological complexity, a conceptual model based on habitat contours may help to bridge the perceived gap between pattern and process in landscape ecology. Habitat contours do not preclude the use of existing landscape models and should be seen as a complementary approach most suited to heterogeneous human-modified landscapes.  相似文献   

2.
Fin whale (Balaenoptera physalus quoyi) habitat use and its relationship to environmental conditions are generally unknown in the Southern Ocean, presenting challenges for predicting their seasonal occurrence and potential effects of fishing pressure and climate change on this endangered species. Using biological data collected during 14 shipboard surveys off the northern Antarctic Peninsula and oceanographic data from satellite remote sensing, we mapped the distribution of fin whale hotspots, Antarctic krill abundance (biomass from acoustics, concentrations from nets) and ocean conditions during mid- and late-summer to investigate the environmental determinants of whale hotspots. Generalized additive models (GAM) were used to test the hypothesis that intra-seasonal changes in fin whale hotspot distribution relate to sea surface temperature (SST), krill abundance and eddy kinetic energy (EKE). More whale hotspots (sightings and individuals) are observed during late- than mid-summer surveys. During mid-summer, hotspots occurred near Elephant Island while in late-summer they were distributed throughout the slope region in proximity to the mean location of the southern Antarctic Circumpolar Current Front. The spatial mean of EKE did not differ between mid- and late-summer surveys, but the spatial mean of SST was significantly warmer during late-summer. The GAM for mid-summer indicates that fin whale hotspots were positively related to SST, EKE and acoustically determined krill biomass. The GAM for late-summer indicates the hotspots were negatively related to net-based krill abundance and positively related to acoustic krill biomass and EKE. This study is important because environmental determinants of fin whale hotspots may be used as reference points for implementing future conservation plans for their recovering populations.  相似文献   

3.
When changes in the frequency and extent of disturbance outstrip the recovery potential of resident communities, the selective removal of species contributes to habitat loss and fragmentation across landscapes. The degree to which habitat change is likely to influence community resilience will depend on metacommunity structure and connectivity. Thus ecological connectivity is central to understanding the potential for cumulative effects to impact upon diversity. The importance of these issues to coastal marine communities, where the prevailing concept of open communities composed of highly dispersive species is being challenged, indicates that these systems may be more sensitive to cumulative impacts than previously thought. We conducted a disturbance-recovery experiment across gradients of community type and environmental conditions to assess the roles of ecological connectivity and regional variations in community structure on the recovery of species richness, total abundance, and community composition in Mahurangi Harbour, New Zealand. After 394 days, significant differences in recovery between sites were apparent. Statistical models explaining a high proportion of the variability (R2 > 0.92) suggested that community recovery rates were controlled by a combination of physical and ecological features operating across spatial scales, affecting successional processes. The dynamic and complex interplay of ecological and environmental processes we observed driving patch recovery across the estuarine landscape are integral to recovery from disturbances in heterogeneous environments. This link between succession/recovery, disturbance, and heterogeneity confirms the utility of disturbance-recovery experiments as assays for cumulative change due to fragmentation and habitat change in estuaries.  相似文献   

4.
Because behavioral variation within and among populations may result from ecological, social, genetic and phenotypic differences, identifying the mechanism(s) responsible is challenging. Observational studies typically examine social learning by excluding ecological and genetic factors, but this approach is insufficient for many complex behaviors associated with substantial environmental variation. Indian Ocean bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia show individual differences in foraging tactics, including possible tool use with marine sponges and social learning may be responsible for this diversity. However, the contributions of ecological factors to the development of these foraging tactics were not previously investigated. Here, we determined the relationship between ecological variables and foraging tactics and assessed whether differences in habitat use could explain individual differences in foraging tactics. We monitored 14 survey zones to identify how foraging tactics were spatially distributed and matched behavioral data to the ecological variables within each zone. Three of four foraging tactics were significantly correlated with ecological characteristics such as seagrass biomass, water depth, presence of marine sponges and season. Further, individual differences in habitat use were associated with some tactics. However, several tactics overlapped spatially and previous findings suggest demographic and social factors also contribute to the individual variation in this population. This study illustrates the importance of environmental heterogeneity in shaping foraging diversity and shows that investigating social learning by ruling out alternative mechanisms may often be too simplistic, highlighting the need for methods incorporating the relative contributions of multiple factors.  相似文献   

5.
Identification of critical habitat in estuarine nursery areas is an important conservation and management objective. Habitat can be viewed as a mosaic of both temporally variable environmental features and spatially variable structural features that combine to define optimal habitat. Effective models of juvenile distributions should account for individual movement, as well as the full suite of habitat variability including both spatial and temporal components. We have extended a terrestrial model of small-scale movement patterns to describe habitat choices of an index juvenile fish in an estuarine nursery system. Movement of small juvenile fishes was found to be influenced by both spatial and temporal patterns in habitat quality, and it was a balanced mix of both that resulted in an optimal distribution. Fishes that perceive habitat on a scale much smaller than the scale of spatial heterogeneity may respond to temporal change as a movement cue allowing for more deterministic outcomes at larger scales despite perceptual limitations. These model outcomes suggest a hierarchical approach is best for describing habitat choice in juvenile fishes and this approach will be used in the future to explore individual and population responses to predictable habitat change.  相似文献   

6.
Wojdak JM  Mittelbach GG 《Ecology》2007,88(8):2072-2083
While the number of studies investigating the effects of species diversity on ecosystem properties continues to expand, few have explicitly examined how ecosystem functioning depends quantitatively on the degree of niche complementarity among species. We report the results of a microcosm experiment where similarity in habitat use among aquatic snail species was evaluated as a predictor of changes in community and ecosystem properties due to increasing species richness. Replicate microcosms with all possible one- and two-species combinations of a guild of six snail species were stocked with identical initial snail biomass. Microcosms with two species of snails had greater final snail biomass, lower attached algae biomass, and less total organic matter than monocultures. Snail species differed in their use of five distinct habitat types in the microcosms. Similarity in habitat use between a species pair was negatively related to the magnitude of change (e.g., deltaEF [change in ecosystem function]) in dissolved oxygen. periphyton biomass, and accrual of organic matter with a change in diversity. However, using the most stringent criterion for complementarity effects (e.g., Dmax [proportional deviation of the total polyculture yield from the highest yielding monoculture]), a relationship between species' niche similarity and changes in function with increasing species richness was only observed for dissolved oxygen. The identity of snail species present in the microcosms had strong effects on total organic matter, snail biomass, dissolved oxygen, periphyton biomass, and sedimentation rate. In this study, herbivore identity, sampling effects, and niche complementarity all appear to contribute to species richness effects on pond ecosystem properties and community structure. The analytical approach employed here may profitably be used in other systems to quantify the role of niche complementarity in species richness-ecosystem function relationships.  相似文献   

7.
Conclusions Whereas old coal tips were looked on in the past as constituting large reserves of energy resources, these very tips have today acquired a new ecological value, and because of their biological worth, or because of the fact that they improve the landscape, these considerations ought to supersede the old concept. Of course, the ecological and economic features can be said to be related when the biomass found on coal tips can be used economically.We can rightly say that the environmental impact of the coal extracting industry has left features that will remain whatever they may be: old coal tips, that give us much biological information; subsidence that has made lakes where so many bird varieties can be found; and also those mining sites, whether they are reclaimed and restored or not. All these features of today bear witness to the life and work of many generations.  相似文献   

8.
Several models have been proposed to understand how so many species can coexist in ecosystems. Despite evidence showing that natural habitats are often patchy and fragmented, these models rarely take into account environmental spatial structure. In this study we investigated the influence of spatial structure in habitat and disturbance regime upon species’ traits and species’ coexistence in a metacommunity. We used a population-based model to simulate competing species in spatially explicit landscapes. The species traits we focused on were dispersal ability, competitiveness, reproductive investment and survival rate. Communities were characterized by their species richness and by the four life-history traits averaged over all the surviving species. Our results show that spatial structure and disturbance have a strong influence on the equilibrium life-history traits within a metacommunity. In the absence of disturbance, spatially structured landscapes favour species investing more in reproduction, but less in dispersal and survival. However, this influence is strongly dependent on the disturbance rate, pointing to an important interaction between spatial structure and disturbance. This interaction also plays a role in species coexistence. While spatial structure tends to reduce diversity in the absence of disturbance, the tendency is reversed when disturbance occurs. In conclusion, the spatial structure of communities is an important determinant of their diversity and characteristic traits. These traits are likely to influence important ecological properties such as resistance to invasion or response to climate change, which in turn will determine the fate of ecosystems facing the current global ecological crisis.  相似文献   

9.
Globally, the mean abundance of terrestrial animals has fallen by 50% since 1970, and populations face ongoing threats associated with habitat loss, fragmentation, climate change, and disturbance. Climate change can influence the quality of remaining habitat directly and indirectly by precipitating increases in the extent, frequency, and severity of natural disturbances, such as fire. Species face the combined threats of habitat clearance, changing climates, and altered disturbance regimes, each of which may interact and have cascading impacts on animal populations. Typically, conservation agencies are limited in their capacity to mitigate rates of habitat clearance, habitat fragmentation, or climate change, yet fire management is increasingly used worldwide to reduce wildfire risk and achieve conservation outcomes. A popular approach to ecological fire management involves the creation of fire mosaics to promote animal diversity. However, this strategy has 2 fundamental limitations: the effect of fire on animal movement within or among habitat patches is not considered and the implications of the current fire regime for long-term population persistence are overlooked. Spatial and temporal patterns in fire history can influence animal movement, which is essential to the survival of individual animals, maintenance of genetic diversity, and persistence of populations, species, and ecosystems. We argue that there is rich potential for fire managers to manipulate animal movement patterns; enhance functional connectivity, gene flow, and genetic diversity; and increase the capacity of populations to persist under shifting environmental conditions. Recent methodological advances, such as spatiotemporal connectivity modeling, spatially explicit individual-based simulation, and fire-regime modeling can be integrated to achieve better outcomes for biodiversity in human-modified, fire-prone landscapes. Article impact statement: Land managers may conserve populations by using fire to sustain or enhance functional connectivity.  相似文献   

10.
Barnett A  Beisner BE 《Ecology》2007,88(7):1675-1686
While empirical studies linking biodiversity to local environmental gradients have emphasized the importance of lake trophic status (related to primary productivity), theoretical studies have implicated resource spatial heterogeneity and resource relative ratios as mechanisms behind these biodiversity patterns. To test the feasibility of these mechanisms in natural aquatic systems, the biodiversity of crustacean zooplankton communities along gradients of total phosphorus (TP) as well as the vertical heterogeneity and relative abundance of their phytoplankton resources were assessed in 18 lakes in Quebec, Canada. Zooplankton community richness was regressed against TP, the spatial distribution of phytoplankton spectral groups, and the relative biomass of spectral groups. Since species richness does not adequately capture ecological function and life history of different taxa, features which are important for mechanistic theories, relationships between zooplankton functional diversity (FD) and resource conditions were examined. Zooplankton species richness showed the previously established tendency to a unimodal relationship with TP, but functional diversity declined linearly over the same gradient. Changes in zooplankton functional diversity could be attributed to changes in both the spatial distribution and type of phytoplankton resource. In the studied lakes, spatial heterogeneity of phytoplankton groups declined with TP, even while biomass of all groups increased. Zooplankton functional diversity was positively related to increased heterogeneity in cyanobacteria spatial distribution. However, a smaller amount of variation in functional diversity was also positively related to the ratio of biomass in diatoms/chrysophytes to cyanobacteria. In all observed relationships, a greater variation of functional diversity than species richness measures was explained by measured factors, suggesting that functional measures of zooplankton communities will benefit ecological research attempting to identify mechanisms behind environmental gradients affecting diversity.  相似文献   

11.
Smith JR  Fong P  Ambrose RF 《Ecology》2006,87(5):1153-1161
Mussel beds along the wave-exposed coast of the eastern North Pacific Ocean serve as an important habitat, harboring a high diversity of species. A comparison of California mussel bed community diversity in 2002 to historical data (1960s to 1970s) revealed large declines (mean loss 58.9%), including some declines >141 species (approximately 80% loss). Concurrent work revealed inconsistent changes in mussel populations (biomass and bed thickness) along the California coast, suggesting that diversity declines may be related to large-scale processes rather than local habitat destruction. Potential factors causing declines in mussel community diversity are discussed, with regional climate change associated with the Pacific Decadal Oscillation and climate change induced alterations of ecological interactions and biological processes suggested as likely causes. Although extensive literature has predicted the potential effects of climate change on global diversity, this study is one of the few examples of declines attributed to climate change.  相似文献   

12.
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate‐related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and “distinct population segments” may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case‐by‐case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species’ continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA‐listed species’ survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long‐term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro  相似文献   

13.
14.
Climate change is a key threat to biodiversity. To conserve species under climate change, ecologists and conservation scientists suggest 2 main conservation strategies regarding land use: supporting species’ range shifts to enable it to follow its climatic requirements by creating migration pathways, such as corridors and stepping stones, and conserving climate refugia (i.e., existing habitat areas that are somewhat buffered from climate change). The policy instruments that could be used to implement these conservation strategies have yet to be evaluated comprehensively from an economic perspective. The economic analyses of environmental policy instruments are often based on ecological effectiveness and cost-effectiveness criteria. We adapted these general criteria to evaluate policy instruments for species’ conservation under climate change and applied them to a conceptual analysis of land purchases, offsets, and conservation payments. Depending on whether the strategy supporting species’ range shifts or conserving climate refugia is selected, the evaluation of the policy instruments differed substantially. For example, to ensure ecological effectiveness, habitat persistence over time was especially important for climate refugia and was best achieved by a land-purchase policy instrument. In contrast, for the strategy supporting range shifts to be ecologically effective, a high degree of flexibility in the location of conserved sites was required to ensure that new habitat sites can be created in the species’ new range. Offset programs were best suited for that because the location of conservation sites can be chosen comparatively freely and may also be adapted over time.  相似文献   

15.
The removal, alteration and fragmentation of habitat in many parts of the world has led to a loss of biodiversity. Within the prevailing societal limitations the process is not easily reversed. Attempts are being made to minimise the fragmentation of remaining habitat by strategically reversing or managing habitat loss. Although their relative usefulness is a topic of debate among ecologists, habitat corridors are seen as one way of maintaining spatially dependent ecological processes within landscapes where habitat has been seriously depleted. Corridors can only be effective if they significantly contribute to the species sustaining processes of gene flow, resource access or the colonisation of vacant patches. We present a spatial habitat modelling methodology for evaluating the contribution and potential contribution of connecting paths to landscape connectivity. We have developed the spatial links tool (SLT), which maps link value across a region. The SLT combines connectivity measures from metapopulation ecology with the least cost path algorithm from graph theory, and can be applied to continuously variable landscape data. Combined with expert judgement, link value maps can be used to delineate habitat corridors. The approach capitalises on some synergies between ecological relevance and computational efficiency to produce an easily applied heuristic tool that has been successfully applied in NSW Australia.  相似文献   

16.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   

17.
Ecological Consequences of Recent Climate Change   总被引:47,自引:0,他引:47  
Abstract: Global climate change is frequently considered a major conservation threat. The Earth's climate has already warmed by 0.5° C over the past century, and recent studies show that it is possible to detect the effects of a changing climate on ecological systems. This suggests that global change may be a current and future conservation threat. Changes in recent decades are apparent at all levels of ecological organization: population and life-history changes, shifts in geographic range, changes in species composition of communities, and changes in the structure and functioning of ecosystems. These ecological effects can be linked to recent population declines and to both local and global extinctions of species. Although it is impossible to prove that climate change is the cause of these ecological effects, these findings have important implications for conservation biology. It is no longer safe to assume that all of a species' historic range remains suitable. In drawing attention to the importance of climate change as a current threat to species, these studies emphasize the need for current conservation efforts to consider climate change in both in situ conservation and reintroduction efforts. Additional threats will emerge as climate continues to change, especially as climate interacts with other stressors such as habitat fragmentation. These studies can contribute to preparations for future challenges by providing valuable input to models and direct examples of how species respond to climate change.  相似文献   

18.
The ecological consequences of logging have been and remain a focus of considerable debate. In this study, we assessed bird species composition within a logging concession in Central Kalimantan, Indonesian Borneo. Within the study area (approximately 196 km2) a total of 9747 individuals of 177 bird species were recorded. Our goal was to identify associations between species traits and environmental variables. This can help us to understand the causes of disturbance and predict whether species with given traits will persist under changing environmental conditions. Logging, slope position, and a number of habitat structure variables including canopy cover and liana abundance were significantly related to variation in bird composition. In addition to environmental variables, spatial variables also explained a significant amount of variation. However, environmental variables, particularly in relation to logging, were of greater importance in structuring variation in composition. Environmental change following logging appeared to have a pronounced effect on the feeding guild and size class structure but there was little evidence of an effect on restricted range or threatened species although certain threatened species were adversely affected. For example, species such as the terrestrial insectivore Argusianus argus and the hornbill Buceros rhinoceros, both of which are threatened, were rare or absent in recently logged forest. In contrast, undergrowth insectivores such as Orthotomus atrogularis and Trichastoma rostratum were abundant in recently logged forest and rare in unlogged forest. Logging appeared to have the strongest negative effect on hornbills, terrestrial insectivores, and canopy bark-gleaning insectivores while moderately affecting canopy foliage-gleaning insectivores and frugivores, raptors, and large species in general. In contrast, undergrowth insectivores responded positively to logging while most understory guilds showed little pronounced effect. Despite the high species richness of logged forest, logging may still have a negative impact on extant diversity by adversely affecting key ecological guilds. The sensitivity of hornbills in particular to logging disturbance may be expected to alter rainforest dynamics by seriously reducing the effective seed dispersal of associated tree species. However, logged forest represents an increasingly important habitat for most bird species and needs to be protected from further degradation. Biodiversity management within logging concessions should focus on maintaining large areas of unlogged forest and mitigating the adverse effects of logging on sensitive groups of species.  相似文献   

19.
The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating their population size and geographic range can be problematic and affect the accuracy of conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. We quantified change in availability and use of key ecological resources required for breeding for a critically endangered nomadic habitat specialist, the Swift Parrot (Lathamus discolor). We compared estimates of occupied habitat derived from dynamic presence‐background (i.e., presence‐only data) climatic models with estimates derived from dynamic occupancy models that included a direct measure of food availability. We then compared estimates that incorporate fine‐resolution spatial data on the availability of key ecological resources (i.e., functional habitats) with more common approaches that focus on broader climatic suitability or vegetation cover (due to the absence of fine‐resolution data). The occupancy models produced significantly (P < 0.001) smaller (up to an order of magnitude) and more spatially discrete estimates of the total occupied area than climate‐based models. The spatial location and extent of the total area occupied with the occupancy models was highly variable between years (131 and 1498 km2). Estimates accounting for the area of functional habitats were significantly smaller (2–58% [SD 16]) than estimates based only on the total area occupied. An increase or decrease in the area of one functional habitat (foraging or nesting) did not necessarily correspond to an increase or decrease in the other. Thus, an increase in the extent of occupied area may not equate to improved habitat quality or function. We argue these patterns are typical for mobile resource specialists but often go unnoticed because of limited data over relevant spatial and temporal scales and lack of spatial data on the availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile resource specialists.  相似文献   

20.
《Ecological modelling》2005,185(1):13-27
This paper describes an approach for conducting spatial uncertainty analysis of spatial population models, and illustrates the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial population models typically simulate birth, death, and migration on an input map that describes habitat. Typically, only a single “reference” map is available, but we can imagine that a collection of other, slightly different, maps could be drawn to represent a particular species’ habitat. As a first approximation, our approach assumes that spatial uncertainty (i.e., the variation among values assigned to a location by such a collection of maps) is constrained by characteristics of the reference map, regardless of how the map was produced. Our approach produces lower levels of uncertainty than alternative methods used in landscape ecology because we condition our alternative landscapes on local properties of the reference map. Simulated spatial uncertainty was higher near the borders of patches. Consequently, average uncertainty was highest for reference maps with equal proportions of suitable and unsuitable habitat, and no spatial autocorrelation. We used two population viability models to evaluate the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial uncertainty produced larger variation among predictions of a spatially explicit model than those of a spatially implicit model. Spatially explicit model predictions of final female population size varied most among landscapes with enough clustered habitat to allow persistence. In contrast, predictions of population growth rate varied most among landscapes with only enough clustered habitat to support a small population, i.e., near a spatially mediated extinction threshold. We conclude that spatial uncertainty has the greatest effect on persistence when the amount and arrangement of suitable habitat are such that habitat capacity is near the minimum required for persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号