首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Large-scale biodiversity patterns in freshwater phytoplankton   总被引:4,自引:0,他引:4  
Our planet shows striking gradients in the species richness of plants and animals, from high biodiversity in the tropics to low biodiversity in polar and high-mountain regions. Recently, similar patterns have been described for some groups of microorganisms, but the large-scale biogeographical distribution of freshwater phytoplankton diversity is still largely unknown. We examined the species diversity of freshwater phytoplankton sampled from 540 lakes and reservoirs distributed across the continental United States and found strong latitudinal, longitudinal, and altitudinal gradients in phytoplankton biodiversity, demonstrating that microorganisms can show substantial geographic variation in biodiversity. Detailed analysis using structural equation models indicated that these large-scale biodiversity gradients in freshwater phytoplankton diversity were mainly driven by local environmental factors, although there were residual direct effects of latitude, longitude, and altitude as well. Specifically, we found that phytoplankton species richness was an increasing saturating function of lake chlorophyll a concentration, increased with lake surface area and possibly increased with water temperature, resembling effects of productivity, habitat area, and temperature on diversity patterns commonly observed for macroorganisms. In turn, these local environmental factors varied along latitudinal, longitudinal, and altitudinal gradients. These results imply that changes in land use or climate that affect these local environmental factors are likely to have major impacts on large-scale biodiversity patterns of freshwater phytoplankton.  相似文献   

2.
Extrinsic and intrinsic controls of zooplankton diversity in lakes   总被引:4,自引:0,他引:4  
Pelagic crustacean zooplankton were collected from 336 Norwegian lakes covering a wide range of latitude, altitude, lake area, mean depth, production (as chlorophyll a), and fish community structure. Mean zooplankton species richness during the ice-free season was generally low at high latitudes and altitudes. Further, lower species richness was recorded in western lakes, possibly reflecting constraints on migration and dispersal. However, despite obvious spatial limitations, geographic boundaries were only weak predictors of mean zooplankton richness. Similarly, lake surface area did not contribute positively to mean richness such as seen in other ecosystem surveys. Rather, intrinsic factors such as primary production and fish community (planktivore) structure were identified by regression analysis as the major predictors of zooplankton diversity, while a positive correlation was observed between species richness and total zooplankton biomass. However, in spite of a large number of variables included in this study, the predictive power of multiple regression models was modest (<50% variance explained), pointing to a major role for within-lake properties, as yet unidentified intrinsic forces, stochasticity, or dispersal as constraints on zooplankton diversity in these lakes.  相似文献   

3.
Longmuir A  Shurin JB  Clasen JL 《Ecology》2007,88(7):1663-1674
Interactions between trophic levels during food web assembly can drive positive correlations in diversity between producers, consumers, and decomposers. However, the contribution of trophic interactions relative to local environmental factors in promoting species diversity is poorly understood, with many studies only considering two trophic levels. Here we examine correlations in diversity among zooplankton, phytoplankton, and bacteria in the pelagic zone of 31 lakes in British Columbia, Canada. We sampled species diversity of zooplankton and phytoplankton through morphological identification, and bacterial genetic diversity was estimated by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA polymorphisms. We looked for correlations in diversity that were independent of the abiotic environment by statistically controlling for 18 limnological variables. No significant correlations were found between the diversity of zooplankton, phytoplankton, and bacteria. In addition, the physical factors that were associated with species composition in one trophic level were independent of those that were important for another. Our results provide no support for the importance of direct feedbacks between producers, consumers, and decomposers in maintaining diversity. Zooplankton, phytoplankton, and bacterial diversity and composition are regulated independently from one another and respond to different environmental variables. These results suggest that species of lake plankton show loose trophic associations with one another due to broad diets in consumers and decomposers.  相似文献   

4.
Carey MP  Wahl DH 《Ecology》2010,91(10):2965-2974
Aquatic communities have been altered by invasive species, with impacts on native biodiversity and ecosystem function. At the same time, native biodiversity may mitigate the effects of an invader. Common carp (Cyprinus carpio) is a ubiquitous, invasive fish species that strongly influences community and ecosystem processes. We used common carp to test whether the potential effects of an invasive species are altered across a range of species diversity in native communities. In mesocosms, treatments of zero, one, three, and six native fish species were used to represent the nested subset patterns observed in fish communities of lakes in Illinois, USA. The effect of the invader was tested across fish richness treatments by adding common carp to the native community and substituting native biomass with common carp. Native species and intraspecific effects reduced invader growth. The invader reduced native fish growth; however, the negative effect was minimized with increasing native richness. The zooplankton grazer community was modified by a top-down effect from the invader that increased the amount of phytoplankton. Neither the invader nor richness treatments influenced total phosphorus or community metabolism. Overall, the invader reduced resources for native species; and the effect scaled with how the invader was incorporated into the community. Higher native diversity mitigated the impact of the invader, confirming the need to consider biodiversity when predicting the impacts of invasive species.  相似文献   

5.
Taking 29 Chinese lakes and 29 Italian lakes as two separate case studies, the paper presented the variations of exergies and structural exergies along eutrophication gradients in Chinese and Italian lakes. The exergies (Ex) and structural exergies (Exst) were calculated based on phytoplankton biomass (BA) and zooplankton biomass (BZ). A trophic state index (TSI) scaling from 0 to 100 was developed to classify trophic status for Chinese and Italian lakes based on three indicators, chlorophyll-a concentration (Chl-a, in mg/m3), total phosphorus (TP in mg/m3) and transparency in Secchi disk depth (SD in m). The relationships between TSI and Ex, Exst, total biomass, BZ/BA ratios were analyzed. The following results were obtained: (1) with the increase of TSI in Chinese and Italian lakes, there is an increasing trend for Ex, and a decreasing trend for Exst, generally. The obvious negative correlations exist between TSI and Exst, at the significant level of 0.01 for Italian lakes, and 0.05 for Chinese lakes. The obvious positive correlations exist between TSI and Ex, at the significant level of 0.01 for Chinese lakes, and for Italian lakes in Spring, Autumn and the all-year. (2) The structural exergy is more dependent on the ratio of phytoplankton biomass to zooplankton biomass (BZ/BA) than the exergy, and the exergy is more dependent on total biomass than the structural exergy. (3) The phytoplankton biomass (BA) and zooplankton biomass (BZ) are increased with the increasing TSI in Chinese and Italian lakes, and phytoplankton biomass (BA) increases more rapidly then zooplankton biomass (BZ) does. This results in the definite decrease of BZ/BA ratio with the increasing trophic status index. Such changes of BA, BZ and BZ/BA ratio could explain successfully the variations of exergies and structural exergies along eutrophication gradients in Chinese and Italian lakes. From the two separate case studies of Chinese lakes and Italian lakes, it could be concluded that exergy and structural exergy are feasible to serve as the system-level ecological indicators to give appropriate information on the trophic status of different lakes.  相似文献   

6.
We studied the effect of aquatic vegetation on the process of species sorting and community assembly of three functional groups of plankton organisms (phytoplankton, seston-feeding zooplankton, and substrate-dwelling zooplankton) along a primary productivity gradient. We performed an outdoor cattle tank experiment (n = 60) making an orthogonal combination of a primary productivity gradient (four nutrient addition levels: 0, 10, 100, and 1000 microg P/L; N/P ratio: 16) with a vegetation gradient (no macrophytes, artificial macrophytes, and real Elodea nuttallii). We used artificial plants to evaluate the mere effects of plant physical structure independently from other plant effects, such as competition for nutrients or allelopathy. The tanks were inoculated with species-rich mixtures of phytoplankton and zooplankton. Both productivity and macrophytes affected community structure and diversity of the three functional groups. Taxon richness declined with increasing plankton productivity in each functional group according to a nested subset pattern. We found no evidence for unimodal diversity-productivity relationships. The proportional abundance of Daphnia and of colonial Scenedesmus increased strongly with productivity. GLM analyses suggest that the decline in richness of seston feeders was due to competitive exclusion by Daphnia at high productivity. The decline in richness of phytoplankton was probably caused by high Daphnia grazing. However, partial analyses indicate that these explanations do not entirely explain the patterns. Possibly, environmental deterioration associated with high productivity (e.g., high pH) was also responsible for the observed richness decline. Macrophytes had positive effects on the taxon richness of all three functional plankton groups and interacted with the initial productivity gradient in determining their communities. Macrophytes affected the composition and diversity of the three functional groups both by their physical structure and through other mechanisms. Part of the macrophyte effect may be indirect via a reduction of phytoplankton production. Our results also indirectly suggest that the often reported unimodal relationship between primary productivity and diversity in nature may be partially mediated by the tendency of submerged macrophytes to be most abundant at intermediate productivity levels.  相似文献   

7.
Carroll IT  Cardinale BJ  Nisbet RM 《Ecology》2011,92(5):1157-1165
The frequently observed positive correlation between species diversity and community biomass is thought to depend on both the degree of resource partitioning and on competitive dominance between consumers, two properties that are also central to theories of species coexistence. To make an explicit link between theory on the causes and consequences of biodiversity, we define in a precise way two kinds of differences among species: niche differences, which promote coexistence, and relative fitness differences, which promote competitive exclusion. In a classic model of exploitative competition, promoting coexistence by increasing niche differences typically, although not universally, increases the "relative yield total", a measure of diversity's effect on the biomass of competitors. In addition, however, we show that promoting coexistence by decreasing relative fitness differences also increases the relative yield total. Thus, two fundamentally different mechanisms of species coexistence both strengthen the influence of diversity on biomass yield. The model and our analysis also yield insight on the interpretation of experimental diversity manipulations. Specifically, the frequently reported "complementarity effect" appears to give a largely skewed estimate of resource partitioning. Likewise, the "selection effect" does not seem to isolate biomass changes attributable to species composition rather than species richness, as is commonly presumed. We conclude that past inferences about the cause of observed diversity-function relationships may be unreliable, and that new empirical estimates of niche and relative fitness differences are necessary to uncover the ecological mechanisms responsible for diversity-function relationships.  相似文献   

8.
Processes occurring within small areas (patch-scale) that influence species richness and spatial heterogeneity of larger areas (landscape-scale) have long been an interest of ecologists. This research focused on the role of patch-scale deterministic chaos arising in phytoplankton assemblages characteristic of “Rock-Paper-Scissors” population dynamics (i.e., competitively non-hierarchical). We employed a simple 2-patch model configuration with lateral mixing and through-flow, and tested the robustness of species richness at the scale of the landscape and spatial heterogeneity. Three different assemblages were used that in a dimensionless box model configuration exhibited chaotic behavior. Our results showed that when a spatial dimension was added to the model configuration, and when all species were shared between patches (i.e., no invading populations), chaos-induced species richness and spatial heterogeneity were quickly reduced with the onset of mixing. While assemblages in each patch were comprised of exactly the same species, they differed in their proportional population densities due to differing stages of succession and the incidence of alternative assemblage structures. Even at very low mixing rates (0.001 d−1), which produced low passive migration rates (0.1% of the total biomass per day), the incidence of high richness and heterogeneity decreased by ∼80%. Interestingly, this sensitivity was not the same for the three assemblages tested. Declines in species richness and spatial heterogeneity associated with mixing were greater in assemblages comprised of competitively dissimilar species (based on the area occupied in the resource-tradeoff space defined by the R* model). The underlying mechanisms may involve the degree to which nutrient dynamics are altered with the arrival of immigrants. Our findings suggest that in partially to well-mixed aquatic systems, the roles of patch-scale non-hierarchical competition and chaos as factors maintaining species richness and spatial heterogeneity may be limited. However, in aquatic systems that experience periods of very low mixing, or even disconnection, non-hierarchical competition and chaos might indeed contribute significantly to biodiversity.  相似文献   

9.
Wild bees are critical for multiple ecosystem functions but are currently threatened. Understanding the determinants of the spatial distribution of wild bee diversity is a major research gap for their conservation. We modeled wild bee α and β taxonomic and functional diversity in Switzerland to uncover countrywide diversity patterns and determine the extent to which they provide complementary information, assess the importance of the different drivers structuring wild bee diversity, identify hotspots of wild bee diversity, and determine the overlap between diversity hotspots and the network of protected areas. We used site-level occurrence and trait data from 547 wild bee species across 3343 plots and calculated community attributes, including taxonomic diversity metrics, community mean trait values, and functional diversity metrics. We modeled their distribution with predictors describing gradients of climate, resource availability (vegetation), and anthropogenic influence (i.e., land-use types and beekeeping intensity). Wild bee diversity changed along gradients of climate and resource availability; high-elevation areas had lower functional and taxonomic α diversity, and xeric areas harbored more diverse bee communities. Functional and taxonomic β diversities diverged from this pattern, with high elevations hosting unique species and trait combinations. The proportion of diversity hotspots included in protected areas depended on the biodiversity facet, but most diversity hotspots occurred in unprotected land. Climate and resource availability gradients drove spatial patterns of wild bee diversity, resulting in lower overall diversity at higher elevations, but simultaneously greater taxonomic and functional uniqueness. This spatial mismatch among distinct biodiversity facets and the degree of overlap with protected areas is a challenge to wild bee conservation, especially in the face of global change, and calls for better integrating unprotected land. The application of spatial predictive models represents a valuable tool to aid the future development of protected areas and achieve wild bee conservation goals.  相似文献   

10.
Matthews B  Mazumder A 《Ecology》2006,87(11):2800-2812
The significance of spatial subsidies depends on consumer resource interactions in the recipient habitat. Lakes are subsidized by terrestrial carbon sources, but the pathways of allochthonous carbon through lake food webs are complex and not well understood. Zooplankton vertically partition resources within stratified lakes in response to life history trade-offs that are governed by predators, the quantity and quality of food, and abiotic conditions (e.g., UV, temperature, and viscosity). We measured habitat specialization of zooplankton in an oligotrophic lake where allochthonous and autochthonous resources varied with depth. During stratification, the quantity and quality of zooplankton food was highest in the hypolimnion. We used a yearlong time series of the delta13C of zooplankton and particulate organic matter (POM) to determine which zooplankton species exploited hypolimnetic rather than epilimnetic resources. Because the delta13C of POM decreased with depth, we used the delta13C of zooplankton to detect inter- and intraspecific variation in habitat selection. We incubated Daphnia pulex at discrete depths in the water column to confirm that the delta13C of zooplankton can indicate habitat specialization. Zooplankton that specialized in the epilimnion relied more on allochthonous carbon sources than those that specialized in the hypolimnion. Therefore, the fate of allochthonous carbon subsidies to lakes depends on spatially explicit consumer-resource interactions.  相似文献   

11.
We assessed the relative roles of local environmental conditions and dispersal on community structure in a landscape of lakes for the major trophic groups. We use taxonomic presence-absence and abundance data for bacteria, phytoplankton, zooplankton, and fish from 18 lakes in southern Quebec, Canada. The question of interest was whether communities composed of organisms with more limited dispersal abilities, because of size and life history (zooplankton and fish) would show a different effect of lake distribution than communities composed of good dispersers (bacteria and phytoplankton). We examine the variation in structure attributable to local environmental (i.e., lake chemical and physical variables) vs. dispersal predictors (i.e., overland and watercourse distances between lakes) using variation partitioning techniques. Overall, we show that less motile species (crustacean zooplankton and fish) are better predicted by spatial factors than by local environmental ones. Furthermore, we show that for zooplankton abundances, both overland and watercourse dispersal pathways are equally strong, though they may select for different components of the community, while for fish, only watercourses are relevant dispersal pathways. These results suggest that crustacean zooplankton and fish are more constrained by dispersal and therefore more likely to operate as a metacommunity than are bacteria and phytoplankton within this studied landscape.  相似文献   

12.
近年来,随着茂名经济迅猛发展及涉海工程建设,其近海海域遭到日益严重的污染,海域环境日趋恶化。为更好地了解茂名近岸海域中小型浮游动物群落结构及其与环境因子的关系,摸清中小型浮游动物的种类组成及其空间分布状况,保护近岸海域生物多样性,分别于2019年夏季(6月)和秋季(9月)对茂名近海浮游动物进行调查。调查共发现浮游动物52种,以桡足类为主(达到40种,占比76.92%)。秋季浮游动物平均丰度和平均生物量(分别为29.82 ind·m-3和282.08 mg·m-3)均高于夏季(分别为15.71×103 ind·m-3和110.23 mg·m-3)。短角长腹剑水蚤(Oithona brevicornis)、小长腹剑水蚤(Oithona nana)、强额拟哲水蚤(Paracalanus crassirostris)和小拟哲水蚤(Paracalanus parvus)为茂名近岸海域春、夏季优势种。夏季和秋季浮游植物物种多样性指数平均值分别为3.06和2.69,丰富度指数平均值分别为3.65和3.38,均匀度指数平均值分别为0.71和0.66。运用BIO-ENV方法分析了浮游动物群落结构以及与浮游植物丰度、环境因子之间的关系,结果表明浮游植物丰度、溶解氧、盐度、水温、水深是影响夏季浮游动物群落的主要环境因子,水深、浮游植物丰度是影响秋季浮游动物群落的主要环境因子。  相似文献   

13.
Conservation biologists increasingly rely on spatial predictive models of biodiversity to support decision-making. Therefore, highly accurate and ecologically meaningful models are required at relatively broad spatial scales. While statistical techniques have been optimized to improve model accuracy, less focus has been given to the question: How does the autecology of a single species affect model quality? We compare a direct modelling approach versus a cumulative modelling approach for predicting plant species richness, where the latter gives more weight to the ecology of functional species groups. In the direct modelling approach, species richness is predicted by a single model calibrated for all species. In the cumulative modelling approach, the species were partitioned into functional groups, with each group calibrated separately and species richness of each group was cumulated to predict total species richness. We hypothesized that model accuracy depends on the ecology of individual species and that the cumulative modelling approach would predict species richness more accurately. The predictors explained plant species richness by ca. 25%. However, depending on the functional group the deviance explained varied from 3 to 67%. While both modelling approaches performed equally well, the models of the different functional groups highly varied in their quality and their spatial richness pattern. This variability helps to improve our understanding on how plant functional groups respond to ecological gradients.  相似文献   

14.
植物多样性对土壤微生物的影响   总被引:6,自引:0,他引:6  
肖辉林  郑习健 《生态环境》2001,10(3):238-241
生物多样性强烈地影响生态系统的过程.生态系统过程的变化可导致生物多样性衰减并因此导致生态系统功能衰退.植物种丰度和植物功能多样性对土壤细菌群落的代谢活性和代谢多样性有成正比的影响.土壤细菌的代谢活性和代谢多样性随植物种数量的对数和植物功能组的数量而直线上升.其原因可能是由植被流入土壤的物质和能量的多样性和数量的增加,也可能是由土壤动物区系起作用的土壤微生境的多样性的增加造成的.由于植物多样性的丧失所引起的植物生物量的减少对分解者群落有强烈的影响微生物生物量将可能减少,因为在大多数陆地生态系统中,有机碳源限制着土壤微生物的活性.  相似文献   

15.
Kumar S  Stohlgren TJ  Chong GW 《Ecology》2006,87(12):3186-3199
Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for native and nonnative plant species richness and varied with the spatial extent of analysis and levels of ecological hierarchy. The study offers an approach to quantify spatial heterogeneity to improve models of plant biodiversity. The results demonstrate that ecologists must recognize the importance of spatial heterogeneity in managing native and nonnative plant species.  相似文献   

16.
In planktonic food webs, the conversion rate of plant material to herbivore biomass is determined by a variety of factors such as seston biochemical/elemental composition, phytoplankton cell morphology, and colony architecture. Despite the overwhelming heterogeneity characterizing the plant–animal interface, plankton population models usually misrepresent the food quality constraints imposed on zooplankton growth. In this study, we reformulate the zooplankton grazing term to include seston food quality effects on zooplankton assimilation efficiency and examine its ramifications on system stability. Using different phytoplankton parameterizations with regards to growth strategies, light requirements, sinking rates, and food quality, we examined the dynamics induced in planktonic systems under varying zooplankton mortality/fish predation, light conditions, nutrient availability, and detritus food quality levels. In general, our analysis suggests that high food quality tends to stabilize the planktonic systems, whereas unforced oscillations (limit cycles) emerge with lower seston food quality. For a given phytoplankton specification and resource availability, the amplitude of the plankton oscillations is primarily modulated from zooplankton mortality and secondarily from the nutritional quality of the alternative food source (i.e., detritus). When the phytoplankton community is parameterized as a cyanobacterium-like species, conditions of high nutrient availability combined with high zooplankton mortality led to phytoplankton biomass accumulation, whereas a diatom-like parameterization resulted in relatively low phytoplankton to zooplankton biomass ratios highlighting the notion that high phytoplankton food quality allows the zooplankton community to sustain relatively high biomass and to suppress phytoplankton biomass to low levels. During nutrient and light enrichment conditions, both phytoplankton and detritus food quality determine the extent of the limit cycle region, whereas high algal food quality increases system resilience by shifting the oscillatory region towards lower light attenuation levels. Detritus food quality seems to regulate the amplitude of the dynamic oscillations following enrichment, when algal food quality is low. These results highlight the profitability of the alternative food sources for the grazer as an important predictor for the dynamic behavior of primary producer–grazer interactions in nature.  相似文献   

17.
Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty‐one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within‐ and across‐taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. Selección de Múltiples Especies Paraguas para la Diversidad Funcional y Taxonómica para Representar la Biodiversidad Urbana  相似文献   

18.
The variety of local animal sounds characterizes a landscape. We used ecoacoustics to noninvasively assess the species richness of various biotopes typical of an ecofriendly forest plantation with diverse ecological gradients and both nonnative and indigenous vegetation. The reference area was an adjacent large World Heritage Site protected area (PA). All sites were in a global biodiversity hotspot. Our results showed how taxa segregated into various biotopes. We identified 65 singing species, including birds, frogs, crickets, and katydids. Large, natural, protected grassland sites in the PA had the highest mean acoustic diversity (14.1 species/site). Areas covered in nonnative timber or grass species were devoid of acoustic species. Sites grazed by native and domestic megaherbivores were fairly rich (5.1) in acoustic species but none were unique to this habitat type, where acoustic diversity was greater than in intensively managed grassland sites (0.04). Natural vegetation patches inside the plantation mosaic supported high mean acoustic diversity (indigenous forests 7.6, grasslands 8.0, wetlands 9.1), which increased as plant heterogeneity and patch size increased. Indigenous forest patches within the plantation mosaic contained a highly characteristic acoustic species assemblage, emphasizing their complementary contribution to local biodiversity. Overall, acoustic signals determined spatial biodiversity patterns and can be a useful tool for guiding conservation.  相似文献   

19.
Natural diets of vertically migrating zooplankton in the Sargasso Sea   总被引:1,自引:0,他引:1  
The feeding preferences of three common diel vertically migrating zooplankton were investigated from December 1999 to October 2000 at the U.S. JGOFS Bermuda Atlantic Time-Series Study (BATS) station in the Sargasso Sea. Gut content analysis of the copepods Pleuromamma xiphias (Giesbrecht) and Euchirella messinensis (Claus) and of the euphausiid Thysanopoda aequalis (Hansen) indicated that all three species fed on a wide variety of phytoplankton, zooplankton, and detrital material. Diet changes generally reflected seasonal trends in phytoplankton community structure. However, species-specific feeding preferences and differences in feeding selectivity among the three species were evident, and in general agreement with feeding habits predicted from the analysis of mouthpart morphology. The euphausiid T. aequalis fed equally on more different food types compared to both copepod species. The copepod P. xiphias consumed a diverse assemblage of phytoplankton from late winter through the summer (78-93% of gut items, by number, were phytoplankton) and based its diet more strongly on carnivorous feeding in autumn and early winter (31% and 61% of gut items were phytoplankton, respectively). E. messinensis showed the greatest feeding specialization, with a strong preference for pennate diatoms in winter and spring and for coccolithophorids during late summer and fall (constituting 67-93% of gut items by number). All three species consumed diatoms more than other phytoplankton taxa, even though diatoms form only a small fraction of the phytoplankton biomass in the Sargasso Sea. Although the majority of gut items identified were phytoplankton cells, the relative biomass contribution of these small cells may be lower than that of zooplankton and detritus. Zooplankton on which the three species primarily preyed were protozoans and crustaceans, but also included other metazoans such as chaetognaths and cnidarians. Marine snow was also an important component of the diet in all three species, with typically >50% and rarely <20% of the gut content being olive-green debris. Marine snow from larvacean houses was found in the guts of all three species, while E. messinenis appeared to selectively consume marine snow aggregates enriched with bicapitate Nitzschia spp. Large cyanobacteria (>4 µm in diameter) found in guts were also likely consumed with marine snow. The species-specific differences in the diets of these three migrating species suggest that an individual species approach is important in determining how feeding habits affect the structure of pelagic food webs and carbon cycling in the sea. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00227-002-0815-8.  相似文献   

20.
The information on temperature-mediated changes in biodiversity in local assemblages is scarce and mainly addresses the change in species richness. However, warming may have more consistent effects on species turnover than on the number of species. Moreover, very few studies extended the analysis of changes in biodiversity and species composition to questions of associated ecosystem functions such as primary production. Here, we synthesize 4 case studies employing microalgal microcosms within the Aquashift priority program to ask (1) do warming-related shifts in species richness correspond to changes in the rate of biomass production, (2) do similar relationships prevail for evenness, and (3) do warming-related shifts in species turnover stabilize or destabilize biomass production? Two of the four cases are previously unpublished, and for a third case, the link between diversity and functional consequences of temperature was not analyzed before. We found accelerated loss of species with warming in all cases. Biomass production was lower with lower species richness in most cases but increased with lower evenness. Most importantly, the relation between functional and compositional stability was different between cases: More rapid extinction resulted in more variable biomass in 2 cases conducted with a limited species pool, indicating that compositional destabilization relates to functional variability. By contrast, the only experiment with a large species pool (30 species) allowed previously rare species to become dominant in the community and showed more stable biomass at high turnover, indicating that compensatory dynamics (turnover) can promote functional stability. These 4 independent experiments highlight the need to consider both compositional and functional consequences of altered temperature regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号