首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Greenberg, Jonathan Asher, Erin L. Hestir, David Riano, George J. Scheer, and Susan L. Ustin, 2012. Using LiDAR Data Analysis to Estimate Changes in Insolation Under Large‐Scale Riparian Deforestation. Journal of the American Water Resources Association (JAWRA) 48(5): 939‐948. DOI: 10.1111/j.1752‐1688.2012.00664.x Abstract: Riparian vegetation provides shade from insolation to stream channels. A consequence of removing vegetation may be an increase in insolation that can increase water temperatures and negatively impact ecosystem health. Although the mechanisms of riparian shading are well understood, spatially explicit, mechanistic models of shading have been limited by the data requirements of precisely describing the three‐dimensional structure of a riparian corridor. Remotely acquired, high spatial resolution LiDAR data provide detailed three‐dimensional vegetation structure and terrain topography over large regions. By parameterizing solar radiation models that incorporate terrain shadowing with LiDAR data, we can produce spatially explicit estimates of insolation. As a case study, we modeled the relative change in insolation on channels in the Sacramento‐San Joaquin River Delta under current conditions and under a hypothesized deforested Delta using classified LiDAR, rasterized at a 1‐m resolution. Our results suggest that the removal of levee vegetation could result in a 9% increase in solar radiation incident on Delta waters, and may lead to water temperature increases. General, coarse‐scale channel characteristics (reach width, azimuth, levee vegetation cover, and height) only accounted for 72% of the variation in the insolation. This indicates that the detailed information derived from LiDAR data has greater explanatory power than coarser reach‐scale metrics often used for insolation estimates.  相似文献   

2.
Remote sensing has the potential to provide quantitative spatially explicit hydrological information across northern peatland complexes. This paper details a multi-scale remote sensing approach for assessing the use of Sphagnum mosses as proxy indicators of near-surface hydrology. Several spectral indices developed from the near infra-red (NIR) and shortwave infra-red (SWIR) liquid water absorption bands, as well as a biophysical index can be correlated with measures of near-surface moisture in the laboratory, in the field and from airborne imagery. Data from all platforms revealed similar patterns in the spectral indices in relation to changes in moisture although the strength of correlations was reduced as the spatial scale increased. The rapid collection of temporally and spatially explicit hydrological data means that the technique has potential practical application for environmental managers and peatland scientists at the local scale. The task of up-scaling the technique for use in operational peatland hydrological monitoring to the global scale is challenging but achievable, and requires further investigation into the heterogeneity of near-surface moisture across Sphagnum patches and the application of novel image processing techniques to improve the spatial resolution of currently available satellite imagery.  相似文献   

3.
Transnational corporations (TNCs) invest enormous resources in their corporate social responsibility (CSR) programmes in the Niger Delta region of Nigeria. However, the effectiveness and mode of execution of these CSR activities have been subjects of continuing debate. This research was therefore carried out to elicit the perspectives of members of four local communities about the impact of the CSR interventions in the areas of health improvement and participation by members of the communities in the Niger Delta. Semi-structured questionnaires were self-completed by 182 members of the local communities in the Niger Delta; the respondents gave detailed feedback about community feelings for TNCs and their CSR efforts. The findings showed that the people generally have negative views towards the CSR practices of the TNCs. The result of a two-paired t-test showed this to be true for both men and women (P =?.888, CI 95). While 69.8% of the respondents felt that the TNCs did not bring any development to their community, 87.9% had high fear of getting a disease due to the community they live in; interestingly, 90.1% wanted to be involved in decisions concerning their communities. This research therefore proposes the increased use of health impact assessment as an approach to integrate health considerations and community participation into the evaluation and implementation of development programmes in the Niger Delta. Such an approach has the potential to make CSR initiatives more effective, transparent, and minimise the tensions between communities and TNCs.  相似文献   

4.
An oil-impacted site at Oshire-2 in Niger Delta (Nigeria) was delimited by reconnaissance. Surface and subsurface soils were analyzed for total extractable hydrocarbon content and some physicochemical characteristics. The oil-impacted soils had a mean hydrocarbon content of 1.99 × 103 mg/kg (no overlap in Standard Error at 95% Confidence Limit) and were characterized by an isohyperthermic temperature regime >22°C, high moisture content, high acidity (low soil-pH) and low electrical conductivity. The intense infusion of degradable hydrocarbons at the site must have stimulated aerobic and anaerobic microbial metabolism and so, as oxygen became limiting, utilization of alternate electron acceptors produced an increasingly reducing environment.  相似文献   

5.
This paper outlines the main elements of a comprehensive, territorial, hazard amelioration strategy for the oil spill pollution areas of the Eastern Niger Delta of Nigeria. After documenting the extent and type of damage, an argument is presented in favour of urgent action and the need for planning. It is argued that present oil spill pollution laws are coercive and militant and do not encourage communities in the Eastern Niger Delta to act as pressure groups for a clean environment. The paper posits that environmental damages resulting from oil spills can be minimized through co-operative action between and amongst stakeholders-government,oil companies and community representatives. The paper therefore calls for a collective response.  相似文献   

6.
Abstract: The forest shelterbelt (afforestation) project in northern China is the most significant ecosystem project initiated in China during the past three decades. It aims to improve and conserve the ecological environment in the project areas. The tree belt stands along the southern edge of the sandy lands, nearly paralleling to the Great Wall. This study used a regional climate model to simulate the potential of improving regional hydroclimate conditions resulting from the afforestation project. Two simulations with preafforestation and postafforestation land cover were performed over East Asia from January 1987 to February 1988. The model resolution is 60 km. The differences between the two simulations suggest that the northern China forest shelterbelt project is likely to improve overall hydroclimate conditions by increasing precipitation, relative humidity, and soil moisture, and by reducing prevailing winds and air temperature. The effects are more significant in spring and summer than fall and winter. Changes in many hydrologic properties (e.g., evapotranspiration, soil moisture, and water yield), however, differ between the dry Northeast China and the moist Northeast China. The hydroclimate effects are also found in the surrounding areas, featured by noticeably moister conditions in the area south of the afforestation project. The results imply that the shelterbelt project would reduce water yield in afforested Northwest and North China during spring, but increase water yield in the afforested Northeast China as well as in the southern surrounding area, offset some greenhouse effects, and reduce the severity of dust storms. Possible improvements of this study by using actual afforestation data, modeling with higher resolution, longer integration and more detailed processes, and analyzing the physical mechanisms are discussed.  相似文献   

7.
ABSTRACT: Outflow from the Sacramento-San Joaquin river system (Delta outflow) provides about 90 percent of the freshwater flow to San Francisco Bay. Because this river system also supplies most of the water used in California, some believed that annual freshwater flow to the Bay had declined by as much as 50 to 60 percent as water use increased. Consequently, we studied trends in actual Delta outflow and precipitation for the period 1921 to 1986, which is when Delta outflow data are available. We found that there has been no decrease in the annual Delta outflow over this period. In fact, a statistically significant increase in annual Delta outflow of 87 cfa/yr has occurred during the period 1921 to 1986. One reason that Delta outflow has increased is because precipitation has increased faster than water use. Other contributing factors include increased runoff from land use changes, water imports from other areas, and the redistribution of ground water. In addition, statistically significant seasonal trends in Delta outflow were found. Over the period 1921–1986 Delta outflow decreased in April and May and increased from July through November. Changes in other months were not statistically significant. These seasonal changes result primarily from the operation of upstream flood control and water development projects, which store water in the spring and release it in the summer and fall. These seasonal changes are also influenced by a climatic shift that has decreased spring snowmelt runoff and increased late summer through winter precipitation.  相似文献   

8.
Wetlands in the Sanjiang Plain are rich in biodiversity and natural resources in the northeast of China. However, this wetland area has decreased in size and deteriorated in quality owing to expanded agricultural activities since the 1950s. Converting farmlands to wetlands is necessary to improve these conditions. Using Remote Sensing (RS) and Geographic Information Systems (GIS) technologies, we derived farmland productivity data and hydrology data for the Sanjiang Plain. The farmland productivity data were derived from land use and net primary productivity (NPP) data of the MODIS products. We obtained three productivity farmland classes (low, medium, and high) through the NPP anomaly percentage method. We were only concerned with the low-productivity farmland. Hydrology data were modeled with a wetness index, which was derived from Digital Elevation Model (DEM) data. Based on these two data layers, we identified and prioritized sites for the conversion of farmlands to wetlands. The areas with low farmland productivity and medium or high wetness values have potential to support the conversion of farmlands to wetlands. Potential sites were prioritized in terms of patch size and proximity to natural wetlands and water bodies. We obtained three priority classes, among which the high-priority class would be used as the areas for the recent conversion of farmlands to wetlands. The area of this class was 75,888 ha and accounted for 1.3% of the total farmland area.  相似文献   

9.
This study describes soil water repellency developed under prolonged irrigation with treated sewage effluent in a semiarid environment. Soil surface layer (0-5 cm) and soil profile (0-50 cm) transects were sampled at a high resolution at the close of the irrigation season and rainy winter season. Samples from 0- to 5-cm transects were subdivided into 1-cm slices to obtain fine scale resolution of repellency and organic matter distribution. Extreme to severe soil water repellency in the 0- to 5-cm soil surface layer persisted throughout the 2-yr study period in the effluent-irrigated Shamouti orange [Citrus sinensis (L.) Osbeck cv. Shamouti] orchard plot. Nearby Shamouti orange plots irrigated with tap water were either nonrepellent or only somewhat repellent. Repellency was very variable spatially and with depth, appearing in vertically oriented "repellency tongues." Temporal and spatial variability in repellency in the uppermost 5-cm soil surface layer was not related to seasonality, soil moisture content, or soil organic matter content. Nonuniform distribution of soil moisture and fingered flow were observed in the soil profile after both seasons, demonstrating that the repellent layer had a persistent effect on water flow in the soil profile. A lack of correlation between bulk density and volumetric water content in the soil profile demonstrates that the observed nonuniform spatial distribution of moisture results from preferential flow and not heterogeneity in soil properties. Soil water repellency can adversely affect agricultural production, cause contamination of underlying ground water resources, and result in excessive runoff and soil erosion.  相似文献   

10.
Abstract: Managers, regulators, and researchers of aquatic ecosystems are increasingly pressed to consider large areas. However, accurate stream maps with geo‐referenced attributes are uncommon over relevant spatial extents. Field inventories provide high‐quality data, particularly for habitat characteristics at fine spatial resolutions (e.g., large wood), but are costly and so cover relatively small areas. Recent availability of regional digital data and Geographic Information Systems software has advanced capabilities to delineate stream networks and estimate coarse‐resolution hydrogeomorphic attributes (e.g., gradient). A spatially comprehensive coverage results, but types of modeled outputs may be limited and their accuracy is typically unknown. Capitalizing on strengths in both field and regional digital data, we modeled a synthetic stream network and a variety of hydrogeomorphic attributes for the Oregon Coastal Province. The synthetic network, encompassing 96,000 km of stream, was derived from digital elevation data. We used high‐resolution but spatially restricted data from field inventories and streamflow gauges to evaluate, calibrate, and interpret hydrogeomorphic attributes modeled from digital elevation and precipitation data. The attributes we chose to model (drainage area, mean annual precipitation, mean annual flow, probability of perennial flow, channel gradient, active‐channel width and depth, valley‐floor width, valley‐width index, and valley constraint) have demonstrated value for stream research and management. For most of these attributes, field‐measured, and modeled values were highly correlated, yielding confidence in the modeled outputs. The modeled stream network and attributes have been used for a variety of purposes, including mapping riparian areas, identifying headwater streams likely to transport debris flows, and characterizing the potential of streams to provide high‐quality habitat for salmonids. Our framework and models can be adapted and applied to areas where the necessary field and digital data exist or can be obtained.  相似文献   

11.
Accurate records of high‐resolution rainfall fields are essential in urban hydrology, and are lacking in many areas. We develop a high‐resolution (15 min, 1 km2) radar rainfall data set for Charlotte, North Carolina during the 2001‐2010 period using the Hydro‐NEXRAD system with radar reflectivity from the National Weather Service Weather Surveillance Radar 1988 Doppler weather radar located in Greer, South Carolina. A dense network of 71 rain gages is used for estimating and correcting radar rainfall biases. Radar rainfall estimates with daily mean field bias (MFB) correction accurately capture the spatial and temporal structure of extreme rainfall, but bias correction at finer timescales can improve cold‐season and tropical cyclone rainfall estimates. Approximately 25 rain gages are sufficient to estimate daily MFB over an area of at least 2,500 km2, suggesting that robust bias correction is feasible in many urban areas. Conditional (rain‐rate dependent) bias can be removed, but at the expense of other performance criteria such as mean square error. Hydro‐NEXRAD radar rainfall estimates are also compared with the coarser resolution (hourly, 16 km2) Stage IV operational rainfall product. Stage IV is adequate for flood water balance studies but is insufficient for applications such as urban flood modeling, in which the temporal and spatial scales of relevant hydrologic processes are short. We recommend the increased use of high‐resolution radar rainfall fields in urban hydrology.  相似文献   

12.
This study examined the role of gas flaring in the rapid corrosion of zinc roofs in the Niger Delta Region of Nigeria. Four experimental sites were set up where samples of galvanized iron sheet (popularly called “zinc roofs”) were exposed to the atmosphere. The corrosion behaviour of galvanized iron sheet through weight loss determination under different environmental conditions was monitored. A uniform angle of inclination of 22° (which represents the mean angle of inclination of house roofs in the study area) was chosen. The results showed that corrosion was more severe (average readings of 25.89, 34.30, and 21.27 mg) in the three experimental sites that were located near pollution sources such as gas flare station or sea aerosols, than at the controlled site (2.36 mg) that was located far away from pollution sources. It is recommended that government’s policy of zero gas flaring for oil companies operating in the Niger Delta by 2010 be pursued with vigour, so as to realize the deadline and subsequently reduce the economic burden currently suffered by the inhabitants of the Niger Delta through frequent replacement of house roofs and incessant illnesses. In addition, individuals and companies operating in the region should avoid bush burning, reduce the rate of fossil fuel consumption by conserving energy, and install catalytic converters in cars and industrial chimneys, so as to reduce emissions.  相似文献   

13.
The desire of oil companies operating in the Niger Delta to secure their social license to operate, and address their community development obligations, has led in recent years to the adoption of corporate social responsibility (CSR) policies and strategies. Drawing on quantitative and qualitative data collected in host communities within the Niger Delta in Nigeria, the paper compares the effectiveness of two different corporate–community involvement strategies. The evidence suggests that while the corporate–community foundation model has certain advantages over the in-house community investment model, both approaches suffer from a common shortcoming that limits the impact of oil companies’ efforts on community development in their host communities. The paper concludes by exploring the implications of the research findings for corporate–community involvement in the Nigerian oil industry.  相似文献   

14.
ABSTRACT: Accurate assessment of preplanting soil moisture conditions is necessary for good agricultural management, and can have a significant influence on crop yield in the Texas Panhandle region. The Texas High Plains Underground Water Conservation District invests considerable time and money in developing a soil moisture deficit map each year in the hopes of achieving optimal use of irrigation water. Microwave sensors are responsive to surface soil moisture and, if used in this application, can provide timely and detailed information on root zone soil moisture. For this reason, an experiment was conducted in 1984 to evaluate the potential of aircraft-mounted passive microwave sensors. Microwave radiometer data were collected over a 2700 km2 area near Lubbock, Texas, with a processed resolution of 0.32 km2. These data were ground registered and converted to estimates of soil moisture using an appropriate model and land cover and soil texture information. Analyses indicate that the system provides an efficient means for mapping variations in soil moisture over large areas.  相似文献   

15.
Spatial patterns of labile forms of phosphorus in a subtropical wetland   总被引:1,自引:0,他引:1  
Phosphorus (P) has been identified as the key constituent defining wetland productivity, structure, and function. Our goal was to investigate the spatial patterns of total P and three labile forms of P (labile organic, inorganic, and microbial biomass P) across a subtropical wetland located in east-central Florida, the Blue Cypress Marsh Conservation Area (BCMCA), and link spatial patterns to ecosystem processes. The wetland received a continual input of nutrients primarily from the south and intermittently from the west and east, respectively, which ceased in the mid-1990s. Since then the marsh system has been undergoing natural succession. We used (i) ordinary kriging to characterize the spatial patterns of total P and labile P forms across the wetland, (ii) local, moving spatial correlations to investigate relationships between total P and labile P forms, and (iii) a clustering technique to link the identified spatial patterns to biogeochemical processes. The spatially explicit analyses revealed patterns of total P and labile P forms as well as changing relationships between variables across the marsh. We were able to distinguish P-enriched areas from unaffected ("natural") areas and intermediate zones that are currently undergoing change as P is mobilized and translocated. We also identified areas that are at risk, showing a shift toward a more P-enriched status. Our results improve our understanding of P and its labile components within a spatially explicit context.  相似文献   

16.
Nigeria has abundant deposits of oil and natural gas and their exploitation has improved the economy substantially, but with serious environmental costs. Severe ecological damage has occurred in the Niger Delta area where most of the oil industries are based. Statutory rules and regulations for environmental protection applicable to the oil industry in Nigeria appear to be generally inadequate and ineffective. So far, air pollution has not been properly addressed. Natural gas is still being flared from many oil wells, with serious air pollution problems and a waste of this resource. The legal control of air pollution in the light of the ongoing operations of liquified natural gas (LNG) and compressed natural gas (CNG) projects is advised along with other measures for environmental quality, control and the conservation of resources.  相似文献   

17.
In Egypt, production has a high priority. To this end protecting the quality of the groundwater, specifically when used for drinking water, and delineating protection areas around the drinking water wellheads for strict landuse restrictions is essential. The delineation methods are numerous; nonetheless, the uniqueness of the hydrogeological, institutional as well as social conditions in the Nile Delta region dictate a customized approach. The analysis of the hydrological conditions and land ownership at the Nile Delta indicates the need for an accurate methodology. On the other hand, attempting to calculate the wellhead protected areas around each of the drinking wells (more than 1500) requires data, human resources, and time that exceed the capabilities of the groundwater management agency. Accordingly, a combination of two methods (simplified variable shapes and numerical modeling) was adopted. Sensitivity analyses carried out using hypothetical modeling conditions have identified the pumping rate, clay thickness, hydraulic gradient, vertical conductivity of the clay, and the hydraulic conductivity as the most significant parameters in determining the dimensions of the wellhead protection areas (WHPAs). Tables of sets of WHPAs dimensions were calculated using synthetic modeling conditions representing the most common ranges of the significant parameters. Specific WHPA dimensions can be calculated by interpolation, utilizing the produced tables along with the operational and hydrogeological conditions for the well under consideration. In order to simplify the interpolation of the appropriate dimensions of the WHPAs from the calculated tables, an interactive computer program was written. The program accepts the real time data of the significant parameters as its input, and gives the appropriate WHPAs dimensions as its output.  相似文献   

18.
ABSTRACT In humid areas appreciable amounts of rainfall complicate irrigation scheduling. This rainfall tends to give supplemental water application a low priority. As a result irrigation may be delayed until there is not enough time to cover the crop area before some drought damage occurs. To improve the management of irrigation systems, a scheduling model has been developed. The model's water application decisions incorporate climatological records, soil-plant data, current pan evaporation and rainfall, the number of fields to be irrigated, and 5-day weather forecasts. The model updates the soil moisture conditions, predicts impending water depletion, and if supplemental water is needed both the field priority and amount to be applied is indicated for each of the next 5 days. Errors introduced through the use of forecasts and long-term pan evaporation records have been slight because of the tri-weekly updating. Also natural rains which restore the root zone to maximum water holding capacity prevent long-term bias.  相似文献   

19.
ABSTRACT: Remotely sensed soil moisture data measured during the Southern Great Plains 1997 (SGP97) experiment in Oklahoma were used to characterize antecedent soil moisture conditions for the Soil Conservation Service (SCS) curve number method. The precipitation‐adjusted curve number and the soil moisture were strongly related (r2= 0.70). Remotely sensed soil moisture fields were used to adjust the curve numbers and the runoff estimates for five watersheds, in the Little Washita watershed; the results ranged from 2.8 km2 to 601.6 km2. The soil moisture data were applied at two spatial scales, a finer one (800 m) measuring spatial resolution and a coarser one (28 km). The root mean square error (RMSE) and the mean absolute error (MAE) of the runoff estimated by the standard SCS method was reduced by nearly 50 percent when the 800 m soil moisture data were used to adjust the curve number. The coarser scale soil moisture data also significantly reduced the error in the runoff predictions with 41 percent and 28 percent reductions in MAE and RMSE, respectively. The results suggest that remote sensing of soil moisture, when combined with the SCS method, can improve rainfall runoff predictions at a range of spatial scales.  相似文献   

20.
Anderson, SallyRose, Glenn Tootle, and Henri Grissino‐Mayer, 2012. Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree‐Ring Chronologies. Journal of the American Water Resources Association (JAWRA) 48(4): 849‐858. DOI: 10.1111/j.1752‐1688.2012.00651.x Abstract: Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. We used tree‐ring chronologies to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k‐nearest neighbor techniques. We correlated moisture sensitive tree‐ring chronologies in and adjacent to the UCRB with regional soil moisture and tested the relationships for temporal stability. Chronologies that were positively correlated and stable for the calibration period were retained. We used stepwise linear regression to identify the best predictor combinations for each soil moisture region. The regressions explained 42‐78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained more variance in the datasets. Reconstructed soil moisture data was standardized and compared with standardized reconstructed streamflow and snow water equivalent data from the same region. Soil moisture and other hydrologic variables were highly correlated, indicating reconstructions of soil moisture in the UCRB using tree‐ring chronologies successfully represent hydrologic trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号