首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hexabromocyclododecane(HBCD) and tetrabromobisphenol A(TBBPA) are two kinds of brominated flame retardants and widely present in the environment and biota. The levels,spatial distributions and mass inventories of HBCD and TBBPA were investigated in sediments and paddy soils from the Liaohe River Basin in northeast China. The concentrations of ΣHBCD and TBBPA were in the range of not detected(nd) to 4.02 ng/g dry weight(dw) and 0.03 to 4.06 ng/g dw, respectively. γ-HBCD was dominated in sediments,while the abundance of α-HBCD was relatively high in paddy soils. The spatial distributions of HBCD and TBBPA in surface sediments and paddy soils indicated that the local point-input was their major source. The significant correlation between total organic carbon(TOC) contents and the HBCD levels suggested that TOC content also exerted an influence on the distribution of HBCD in sediments. Meanwhile, it was found that the irrigation with river water was not the major transportation pathway of HBCD and TBBPA in paddy soils. Based on the study, it was estimated that there were about 1.67 tons HBCD and 2.20 tons TBBPA deposited into sediments of the Liaohe River system every year. The total mass inventories of HBCD and TBBPA in sediments were far higher than that in paddy soils.  相似文献   

2.
Methyl tert-butyl ether(MTBE), as a widely used gasoline additive, is suspected of being environmentally toxic. MTBE accumulates mainly in adipose tissue, but its effect on obesity or obesity-related metabolic disorders has not been well understood yet. Therefore, we examined the effect of MTBE on the adipose function and the related metabolic processes with both 3T3-L1 cell line and C57 BL/6 J mice model. We found that exposure to MTBE at the environmental relevant concentration(100 μmol/L) could significantly induce differentiation of preadipocyte and disturb insulin-stimulated glucose uptake of mature adipocyte.The in vivo observation in male mice showed a positive correlation of visceral white adipose tissue(vWAT) expansion and cell size increase with MTBE treatment in 14 weeks. Glucose tolerance and insulin sensitivity tests demonstrated that MTBE at 1000 μg/(kg·day)disturbed the systemic glucose metabolism in a gender-specific manner, which might be partly attributed to the alterations of gut microbiota community at genus level with respect to Akkermansia, Clostridium XlVb, and Megamonas. In summary, our study characterized the effect of MTBE on adipose tissue function and glucose homeostasis in vitro and in vivo, and revealed that systemic disorders of the glucose metabolism might be modulated by the related gut microbiota.  相似文献   

3.
The disposal of waste brines has become a major challenge that hinders the wide application of ion- exchange resins in the water industry in recent decades. In this study, high sulfate removal efficiency (80%-90%) was achieved at the influent sulfate concentration of 3600 mg/L and 3% NaC1 after 145 days in an expanded granular sludge bed (EGSB) reactor. Furthermore, the feasibility of treating synthetic waste brine containing high levels of sulfate and nitrate was investigated in a single EGSB reactor during an operation period of 261 days. The highest nitrate and sulfate loading rate reached 6.38 and 5.78 kg/(m3-day) at SO42--S/NO3-N mass ratio of 4/3, and the corresponding removal efficiency was 99.97% and 82.26% at 3% NaC1, respectively. Meanwhile, 454-pyrosequencing technology was used to analyze the bacterial diversity of the sludge on the 240th day for stable operation of phase X. Results showed that a total of 9194 sequences were obtained, which could be affiliated to 14 phyla, including Proteobacteria, Firmicutes, Chlorobi, Bacteroidetes, Synergistetes and so on. Proteobacteria (77.66%) was the dominant microbial population, followed by Firmicutes (12.23%) and Chlorobi (2.71%).  相似文献   

4.
Hexabromocyclododecanes(HBCDs),a new type of persistent organic pollutants widely used as brominated flame retardants,have attracted wide attention due to their increasing level and toxicity. A method based on high-performance liquid chromatography mass spectrometry(HPLC–MS–MS)in electrospray ionization mode has been developed by optimization of various parameters,which effectively improved the separation degree and responsive intensity of α-,β-and γ-HBCD isomers. The concentrations and distribution profiles of three HBCD isomers were investigated in sediments from the Haihe River in China.It was observed that the concentrations of HBCDs varied in the range of 0.4–58.82 ng/g,showing a decreasing trend along the flow direction,possibly due to attenuation and biodegradation along the flow direction of the Haihe River. The distribution profile of α-,β-,γ-HBCD was 7.91%–88.6%,0–91.47%,and 0.62%–42.83%,respectively. Interestingly,α-HBCD dominated in most sample sites. This was different from the distribution profile in commercial industrial products,which might be attributed to the inter-transformation and different degradation rates of the three HBCD isomers. The potential ecological risk of HBCDs in sediment was characterized under the two-tiered procedure of the European Medicines Evaluation Agency for environmental risk assessment. Although the HBCDs in the selected section of the Haihe River presented "no risk" in the sediment compartment,its risk in sediment cannot be neglected since sediment is one of the important sinks and reservoirs of pollutants.  相似文献   

5.
This study was conducted to examine the association of perfluoroalkyl substance(PFAS)exposure with gestational diabetes mellitus(GDM) risk and postpartum fasting blood glucose.We used a 1:2 matched case–control study with 84 GDM subjects and 168 healthy pregnant women from Beijing, China. The maternal blood was collected at 1–2 days before delivery, and eight linear isomers and fourteen branched isomers were determined in maternal serum.Logistic regression analyses were performed to evaluate the associations after adjusting for potential confounders. The median of the sum of levels of total PFASs was 4.24 ng/m L with a interquartile range(IQR) of 2.82–6.54 ng/m L. Although maternal PFAS exposure was not associated with risk of GDM, significant positive associations were observed between evaluated exposure to specific PFAS congeners and increasing blood glucose. The odds ratio(ORs) of the highest category of postpartum fasting blood glucose for perfluoro-1-metylheptylsulfonat(1 m-PFOS), perfluoro-3/4-metylheptylsulfonat(3 m+4 m-PFOS), perfluoro-5-metylheptylsulfonat(5 m-PFOS), and perfluorohexane sulfonate(PFHx S) were 2.03(95% CI: 1.09–3.77), 1.93(95% CI:1.04–3.58), 2.48(95% CI: 1.33–4.65), and 2.26(95% CI: 1.21–4.21), respectively, suggesting negative effects of maternal exposure to specific PFAS compounds on glucose metabolism.  相似文献   

6.
Electrotrophs are microbes that can receive electrons directly from cathode in a microbial electrolysis cell (MEC). They not only participate in organic biosynthesis, but also be crucial in cathode-based bioremediation. However, little is known about the electrotrophic community in paddy soils. Here, the putative electrotrophs were enriched by cathodes of MECs constructed from five paddy soils with various properties using bicarbonate as an electron acceptor, and identified by 16S rRNA-gene based Illumina sequencing. The electrons were gradually consumed on the cathodes, and 25%–45% of which were recovered to reduce bicarbonate to acetic acid during MEC operation. Firmicutes was the dominant bacterial phylum on the cathodes, and Bacillus genus within this phylum was greatly enriched and was the most abundant population among the detected putative electrotrophs for almost all soils. Furthermore, several other members of Firmicutes and Proteobacteria may also participate in electrotrophic process in different soils. Soil pH, amorphous iron and electrical conductivity significantly influenced the putative electrotrophic bacterial community, which explained about 33.5% of the community structural variation. This study provides a basis for understanding the microbial diversity of putative electrotrophs in paddy soils, and highlights the importance of soil properties in shaping the community of putative electrotrophs.  相似文献   

7.
Samples obtained from an industrialized valley in the East Alpine region were collected daily for a half year and analyzed using X-ray fluorescence to examine the elements Si,Al,Fe,Ca,Mg,Na,K,Zn,P,S and Cl.Some factors affecting the changes of these elements were considered,including time,elemental correlations,weekday,weekend and seasonal changes.Diagnostic analysis provided an insight into a decoupling behavior that occursin siliceous and carbonates minerals.A decrease in Si and Al and an increase in carbonates,Na,K,Zn and P were observed during the cold season.However,a consistently high correlation of Si and Al was observed in all seasons.It was established that such high levels originated from street surface abrasion.The increase in variability and absolute levels of carbonates during the cold season was demonstrated by adding carbonates to the street surface as gritting material to increase the grip on snowy surfaces.A marked increase in Na and Cl was observed in winter which may have been caused by thaw salt that is widely used in winter in Austria.This was associated with a significant increase in K,Zn,and P in the cold season that was the result of domestic space heating with wood.PM10 levels in December were 12 μg/m3 and were higher than levels detected in July.It was established that such high levels originated from mineral oxides,wood smoke,and inorganic ionic material(s).  相似文献   

8.
Methanotrophic–heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-β-hydroxybutyrate(PHB)accumulation capacity from methane.Methane was used as the carbon source,N_2as sole nitrogen source,and oxygen and Cu content were varied.Copper proved essential for PHB synthesis.All cultures enriched with Cu could accumulate high content of PHB(43.2%–45.9%),while only small amounts of PHB were accumulated by cultures enriched without Cu(11.9%–17.5%).Batch assays revealed that communities grown with Cu and a higher O_2content synthesized more PHB,which had a wider optimal CH_4:O_2range and produced a high PHB content(48.7%)even though in the presence of N_2.In all methanotrophic–heterotrophic communities,both methanotrophic and heterotrophic populations showed the ability to accumulate PHB.Although methane was added as the sole carbon source,heterotrophs dominated with abundances between 77.2%and 85.6%.All methanotrophs detected belonged to type II genera,which formed stable communities with heterotrophs of different PHB production capacities.  相似文献   

9.
A greenhouse experiment was carried out to compare differences in potential activities of ammonification, nitrification and denitrification in rhizosphere and bulk soil in a heavy-metal-stressed system. Exchangeable fractions of Cd, Cu and Cr were all higher in the rhizosphere of maize than in bulk soil. Results showed that the mineralization of N in soil was stimulated by low concentration of Cd.Addition of Cd at low levels stimulated the ammonifying and nitrifying activity in soil, while inhibitory influences were shown at high levels.Nitrifying bacteria was proved to be the most sensitive one, whilst the effect on denitrifying bacteria was very limited. Comparing Cd, Cu and Cr(Ⅵ) at 20 mg/kg soil, Cd was the most effective inhibitor of ammonification and denitrification, while Cr(Ⅵ) had the strongest influence on nitrifying activity. Root exudates played important roles on the different exchangeable metal fractions and bacterial activities between rhizosphere and non-rhizosphere. Nitrate was the main form of mineral N in soil, as well as the main form of N absorbed by plants, but the formation and relative absorption of ammonium were promoted in response to high Cd exposure.  相似文献   

10.
An acclimatized mixed microbial culture, predominantly Pseudomonas sp., was enriched from a sewage treatment plant, and its potential to simultaneously degrade mixtures of phenol and m-cresol was investigated during its growth in batch shake flasks. A 22 full factorial design with the two substrates at two di erent levels and di erent initial concentration ranges (low and high), was employed to carry out the biodegradation experiments. The substrates phenol and m-cresol were completely utilized within 21 h when present at low concentrations of 100 mg/L for each, and at high concentration of 600 mg/L for each, a maximum time of 187 h was observed for their removal. The biodegradation results also showed that the presence of phenol in low concentration range (100–300 mg/L) did not inhibit m-cresol biodegradation. Whereas the presence of m-cresol inhibited phenol biodegradation by the culture. Moreover, irrespective of the concentrations used, phenol was degraded preferentially and earlier than m-cresol. A sum kinetics model was used to describe the variation in the substrate specific degradation rates, which gave a high coe cient of determination value (R2 > 0.98) at the low concentration range of the substrates. From the estimated interaction parameter values obtained from this model, the inhibitory e ect of phenol on m-cresol degradation by the culture was found to be more pronounced compared to that of m-cresol on phenol. This study showed a good potential of the indigenous mixed culture in degrading mixed substrate of phenolics.  相似文献   

11.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

12.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

15.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

16.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

17.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

18.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

19.
以三峡大学的校园河道求索溪为研究对象,利用综合水质标识指数法确定求索溪水质类别,分析其水质时空变化规律,并利用对应分析法得出求索溪中不同监测点的主要污染因子.研究结果表明:求索溪整体的综合水质标识指数为7.423,整体水质为劣V类(地表水环境质量标准GB 3838-2002)且黑臭.从时间变化来看,求索溪4月份的水质最差,5月份次之,4、5月份所有监测点的水质都劣于V类且黑臭;8月份水质最好,水质为Ⅳ类;从空间分布来看,8个监测点综合水质标识指数均超过6.0,水质为劣V类,其中6号监测点的水质相对最好,监测点3号的水质相对最差;对应分析法得出求索溪的整体水体污染程度受总氮因子的影响最大,其次为总磷.该研究拟为求索溪及类似校园河道的水环境治理研究提供基础依据和参考.  相似文献   

20.
Effects of chitosan on a submersed plant, Hydrilla verticillata, were investigated. Results indicated that H. venicillata could prevent ultrastructure phytotoxicities and oxidativereaction from polluted water with high chemical oxygen demand (COD). Superoxide dismutase (SOD) activity and malondialdehyde (MDA) contents in H. verticillata treated with 0.1% chitosan in wastewater increased with high COD (980 mg/L) and decreased with low COD (63 mg/L), respectively. Ultrastructural analysis showed that the stroma and grana of chloroplast basically remained normal. However, plant cells from the control experiment (untreated with chitosan) were vacuolated and the cell interval increased. The relict of protoplast moved to the center, with cells tending to disjoint. Our findings indicate that wastewater with high COD concentration can cause a substantial damage to submersed plant, nevertheless, chitosan probably could alleviate the membrane lipid peroxidization and ultrastructure phytotoxicities, and protect plant cells from stress of high COD concentration polluted water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号