首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 845 毫秒
1.
Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and transport are limited. Here we describe the use of a structural variable to keep track of solute flux exposure to reactive surfaces. With this approach, we develop a non-reactive tracer model that is useful for determining the signature of multi-scale reactive solid heterogeneity in terms of solute flux distributions at the field scale, given realizations of three-dimensional reactive site density fields. First, a governing Eulerian equation for the non-reactive tracer model is determined by an upscaling technique in which it is found that the exposure time of solution to reactive surface areas evolves via both a macroscopic velocity and a macroscopic dispersion in the artificial dimension of exposure time. Second, we focus on the Lagrangian approach in the context of a streamtube ensemble and demonstrate the use of the distribution of solute flux over the exposure time dimension in modeling two-dimensional transport of a solute undergoing simplified linear reversible reactions, in hypothetical conditions following prior laboratory experiments. The distribution of solute flux over exposure time in a given case is a signature of the impact of heterogeneous aquifer reactivity coupled with a particular physical heterogeneity, boundary conditions, and hydraulic gradient. Rigorous application of this approach in a simulation sense is limited here to linear kinetically controlled reactions.  相似文献   

2.
Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.  相似文献   

3.
Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥7.2 both adsorption and Ni-Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈34%) and Ni-Al LDH precipitation (≈66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni-Al LDH precipitation is a promising mechanism to immobilize Ni.  相似文献   

4.
A popular method for the treatment of aquifers contaminated with chlorinated solvents is chemical oxidation based on the injection of potassium permanganate (KMnO4). Both the high density (1025 gL− 1) and reactivity of the treatment solution influence the fate of permanganate (MnO4) in the subsurface and affect the degree of contaminant treatment. The MIN3P multicomponent reactive transport code was enhanced to simulate permanganate-based remediation, to evaluate the pathways of MnO4 utilization, and to assess the role of density contrasts for the delivery of the treatment solution. The modified code (MIN3P-D) provides a direct coupling between density-dependent fluid flow, solute transport, contaminant treatment, and geochemical reactions. The model is used to simulate a field trial of TCE oxidation in a sandy aquifer that is underlain by an aquitard. Three-dimensional simulations are conducted for a coupled reactive system comprised of ten aqueous components, two mineral phases, TCE (dissolved, adsorbed, and NAPL), reactive organic matter, and including ion exchange reactions. Model parameters are constrained by literature data and a detailed data set from the field site under investigation. The general spatial and transient evolution in observed concentrations of the oxidant, dissolved TCE, and reaction products are adequately reproduced by the simulations. The model elucidates the important role of density-induced flow and transport on the distribution of the treatment solution into NAPL containing regions located at the aquifer–aquitard interface. Model results further suggest that reactions that do not directly affect the stability of MnO4 have a negligible effect on solution density and MnO4 delivery.  相似文献   

5.
胺基树脂的合成及对水中重金属离子的吸附特征   总被引:3,自引:1,他引:2  
研究了使用氯甲基化聚苯乙烯交联微球为前驱体与二乙烯三胺经回流反应合成胺基树脂及其对水中Cd2+和Ni2+的吸附特征。结果表明,胺基官能团成功地嫁接到树脂表面,胺基含量为5.6 mmol/g。胺基树脂对Cd2+和Ni2+的吸附等温线表明,温度的升高有利于吸附,且吸附等温线都符合Langmuir模型。pH值对吸附的影响较大,最佳吸附pH值范围为4~6。2种金属离子在胺基树脂上的吸附都符合准二级动力学方程。  相似文献   

6.
The removal of Cu2+, Ni2+, and Zn2+ ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu2+?>?Ni2+?>?Zn2+. The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions.  相似文献   

7.
A facile one-pot process has been proposed to prepare the novel ethylenediaminetetraacetic acid (EDTA)-modified magnetite nanoparticles (EDTA-MNPs). The bared Fe3O4 magnetite nanoparticles and EDTA-MNPs were characterized using FTIR spectroscopy, TEM, VSM, and X-ray diffraction. The application of the modified magnetite nanoparticles for metal ion uptake was studied using Ni2+ as a model. The adsorption was fast and the equilibrium was established within 5 min, and the adsorption kinetics of Ni2+ onto EDTA-MNPs followed the pseudo second-order chemisorption mechanism. Maximum adsorption capacity for Ni2+ reached as high as 41.3 mg/g at pH 6. The successive adsorption–desorption studies indicated that the EDTA-MNPs kept the adsorption and desorption efficiencies constant over ten cycles. Importantly, EDTA-MNPs were able to remove nearly 100 % of Ni2+ from real water.  相似文献   

8.
荔枝皮对重金属Ni~(2+)的吸附性能   总被引:3,自引:0,他引:3  
采用批量实验研究了荔枝皮对水中重金属Ni2+吸附的影响因素(如接触时间、pH和吸附剂量)、吸附等温线、吸附动力学和吸附热力学等,并讨论了其吸附机理。结果表明,未改性荔枝皮和改性荔枝皮对Ni2+的吸附平衡时间均为30min;最适pH为6.0~7.0;最佳吸附剂量均为20 g/L。吸附过程均能用Langmuir和Freundlich等温线模型来很好地描述,且均符合假二次动力学模型。改性荔枝皮和未改性荔枝皮对Ni2+的最大比吸附量分别为11.88和5.19 mg/g。此外,热力学研究结果表明,未改性荔枝皮和改性荔枝皮吸附Ni2+均属于非自发的放热过程。  相似文献   

9.
Saline solutions are the most commonly used hydrological tracers, because they can be easily and economically monitored by in situ instrumentation such as electrical conductivity (EC) loggers in wells or by geoelectrical measurements. Unfortunately, these low-cost techniques only provide information on the total concentration of ions in solution, i.e., they cannot resolve the ionic composition of the aqueous solution. This limitation can introduce a bias in the estimation of aquifer parameters where sorption phenomena between saline tracers and sediments become relevant. In general, only selected anions such as Cl(-) and Br(-) are recognised to be transported unretarded and they are referred to as conservative tracers or mobile anions. However, cations within the saline tracer may interact with the soil matrix through a range of processes such as ion exchange, surface complexation and via physical mass-transfer phenomena. Heterogeneous reactions with minerals or mineral surfaces may not be negligible where aquifers are composed of fine alluvial sediments. The focus of the present study was to examine and to quantify the bias between the aquifer parameters estimated during model-based interpretation of experimental data of EC measurements of saline tracer relative to the aquifer parameters found by specific measurements (i.e. via ionic chromatography, IC) of truly conservative species. To accomplish this, column displacement experiments with alluvial aquifer materials collected from the Po lowlands (Italy) were performed under water saturated conditions. The behaviour of six selected, commonly used saline tracers (i.e., LiCl, KCl, and NaCl; LiBr, KBr, and NaBr) was studied and the data analysed by inverse modelling. The results demonstrate that the use of EC as a tracer can lead to an erroneous parameterisation of the investigated porous media, if the reactions between solute and matrix are neglected. In general, errors were significant except for KCl and KBr, which is due to the weak interaction between dissolved K(+) and the sediment material. The study shows that laboratory scale pre-investigations can help with tracer selection and to optimise the concentration range targeted for in situ multilevel monitoring by unspecific geoelectrical instrumentation.  相似文献   

10.
Understanding the fundamentals of arsenic adsorption and oxidation reactions is critical for predicting its transport dynamics in groundwater systems. We completed batch experiments to study the interactions of arsenic with a common MnO2(s) mineral, pyrolusite. The reaction kinetics and adsorption isotherm developed from the batch experiments were integrated into a scalable reactive transport model to facilitate column-scale transport predictions. We then completed a set of column experiments to test the predictive capability of the reactive transport model. Our batch results indicated that the commonly used pseudo-first order kinetics for As(III) oxidation reaction neglects the scaling effects with respect to the MnO2(s) concentration. A second order kinetic equation that explicitly includes MnO2(s) concentration dependence is a more appropriate kinetic model to describe arsenic oxidation by MnO2(s) minerals. The arsenic adsorption reaction follows the Langmuir isotherm with the adsorption capacity of 0.053micromol of As(V)/g of MnO2(s) at the tested conditions. The knowledge gained from the batch experiments was used to develop a conceptual model for describing arsenic reactive transport at a column scale. The proposed conceptual model was integrated within a reactive transport code that accurately predicted the breakthrough profiles observed in multiple column experiments. The kinetic and adsorption process details obtained from the batch experiments were valuable data for scaling to predict the column-scale reactive transport of arsenic in MnO2(s)-containing sand columns.  相似文献   

11.
Lin C  Shacahr Y  Banin A 《Chemosphere》2004,57(9):1047-1058
Soil aquifer treatment (SAT) of wastewater relies on extensive biogeochemical processes in the soil and aquifer to achieve large-scale and economic reclamation of municipal effluents. Removal of trace metals from the wastewater is a prime objective in the operation, but the long-term sustainability of the adsorptive filtration capacity of the soils is an open question. Solid/solution partitioning (measured by the distribution coefficient, K(d)) and solid/solid partitioning (measured by selective sequential dissolution, SSD) of heavy metals were measured in soils sampled from active recharge basins in a wastewater reclamation plant and were compared to the adjacent pristine dune. K(d) values for the adsorption of Cu, Ni and Zn, measured in short-term adsorption experiments positively and significantly correlated with solution pH. Quantitative estimation of Cu, Ni and Zn adsorption on multi-sorbents indicated that surface adsorption and precipitation on Fe oxides and/or carbonate may be the major mechanisms of metal retention in these soils. SSD analyses of metal partitioning in soils exposed to approximately 20yr of effluent recharge showed that all solid-phase components, including the most stable 'residual' component, competed for and retained added Cu and Zn. Copper preferentially partitioned into the oxide component (32.0% of the soil-accumulated metal) while Zn preferentially partitioned into the carbonate component (51.6% of the soil-accumulated metal).  相似文献   

12.
Sorption of hexadecyltrimethylammonium chloride (HDTMA), a cationic surfactant, on aquifer material from Columbus AFB, Mississippi, U.S.A., was examined. Transport studies using flow-through columns and a box model aquifer showed that an almost stationary zone of HDTMA-modified aquifer material could be produced in situ without a significant decrease in hydraulic conductivity.Perchloroethylene (PCE) and naphthalene sorption isotherms on the HDTMA-modified aquifer material were linear, and sorption coefficients were increased by over two orders of magnitude relative to the unmodified material. The retardation of PCE by insitu emplaced HDTMA zones within a column was examined. Agreement between batch- and column-derived sorption coefficients and breakthrough curve symmetry indicates that local equilibrium was attained. Significant retardation of a naphthalene plume by an in situ emplaced surfactant zone was demonstrated in the box model aquifer system.The experimental results indicate that it is feasible to create in situ a sorbent zone within an aquifer using cationic surfactants. In most situations, the sorbent zone concept needs to be coupled with contaminant degradation processes for sorbent emplacement to be a practical tool in the remediation of groundwater contamination sites. Sorbent zones may be of benefit in the engineering of suitable environments for microbial or abiotic degradation reactions and by providing time slow reactions to occur.  相似文献   

13.
Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions.  相似文献   

14.
A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from approximately 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.  相似文献   

15.
巯基化改性膨润土对重金属的吸附性能   总被引:2,自引:0,他引:2  
以钙基膨润土为基本材料,制备了巯基化改性膨润土,并对比研究了此材料与其他17种改性膨润土和原材料对重金属的吸附性能.结果表明,巯基化膨润土对镉的吸附能力显著优于其他材料,在本实验条件下,其对镉的吸附率高于其他材料30%以上,对镉的吸附量可达52.1 mg/g.巯基化膨润土对铅的吸附能力在重金属竞争吸附条件下优于其他材料,而其对镍的吸附能力在所有材料中处于中等水平;另外,巯基化膨润土对3种重金属的吸附受重金属竞争吸附影响较小.因此,在所研究的材料中,巯基化膨润土材料是一种最理想的重金属吸附材料.  相似文献   

16.
The accumulation and rhizotoxicity of Ni to pea were investigated. Calcium, H, and Ni competed for root-binding sites with high pH and low Ca favoring more Ni accumulation. At low pH, Ca accumulation is the key factor determining root growth, while at medium to high pH, root elongation is more sensitive to Ni concentration. The tissue concentration of Ni and Ca ([Ni]t or [Ca]t, μmol g−1 dry root) can be predicted from total dissolved Ni ([Ni]T, μM), pH, and total dissolved Ca ([Ca]T, mM) by two approaches. Approach 1 is the empirical equations [Ni]t = (0.361 pH-0.695[Ca]T)*[Ni]T and [Ca]t = 8.29 pH + 10.8 [Ca]T. The second approach involves a two-step model. The surface-bound Ni and Ca are estimated from a surface adsorption model with binding constants derived from independent ion adsorption experiments. Then transfer functions are used to predict internal root Ni and Ca accumulation.  相似文献   

17.
A research tool for modeling the reactive flow and transport of groundwater contaminants in multiple dimensions is presented. Arbitrarily complex coupled kinetic–equilibrium heterogeneous reaction networks, automatic code generation, transfer-function based solutions, parameter estimation, high-resolution methods for advection, and robust solvers for the mixed kinetic–equilibrium chemistry are some of the features of reactive flow and transport (RAFT) that make it a versatile research tool in the modeling of a wide variety of laboratory and field experiments. The treatment of reactions is quite general so that RAFT can be used to model biological, adsorption/desorption, complexation, and mineral dissolution/precipitation reactions among others. The integrated framework involving automated code generation and parameter estimation allows for the development, characterization, and evaluation of mechanistic process models. The model is described and used to solve a problem in competitive adsorption that illustrates some of these features. The model is also used to study the development of an in situ Fe(II)-zone by encouraging the growth of an iron-reducing bacterium with lactate as the electron donor. Such redox barriers are effective in sequestering groundwater contaminants such as chromate and TCE.  相似文献   

18.
The paper describes the results of a laboratory study on the effects of macropore tortuosity on breakthrough curves BTCs and solute distribution in a Forman loam (fine loamy-mixed Udic Haploborolls) soil. BTC were obtained using 2-D columns (slab) containing artificial macropores of five different tortuosity levels. The BTCs were run under a constant hydraulic head of 0.08 m over an initially air dry soil. The input solutions contained 1190 mg l−1 of potassium bromide, 10 mg l−1 of Rhodamine WT, and 100 mg l−1 of FD&C Blue #1. A soil column without macropores served as a control. The displacement of a non-adsorbed tracer was not affected by the tortuosity level. An increase in macropore tortuosity progressively increased the breakthrough time, increased the apparent retardation coefficient (R′), decreased the depth to the center of mass of a given adsorbed tracer, and increased the anisotropy in tracer distribution profile. The relative importance of macropore tortuosity increased with an increase in the adsorption coefficient of the tracer. Compared to macropore continuity, the macropore tortuosity had greater impact on solute distribution profile than in its leaching.  相似文献   

19.
Nowadays, it is necessary to understand and identify the reactions governing the fate of heavy metals introduced into the environment with low complexing organic compounds, particularly when they are transferred through soils in urban areas. In this work the concomitant influence of pH and acetate on the fate of zinc on siliceous sand was studied in batch and non-saturated column experiments. Total zinc concentrations varied between 2 and 20 mg/l, and total acetate concentrations were fixed at 22, 72, 132, and 223 mM to obtain solution pHs of 4, 5, 6 and 7, respectively. Natural sand (diameter, 0.3-2 mm), mainly constituted of silica, was used. In batch adsorption experiments, zinc adsorption is insignificant at pH 4, low and linear at pH 5, and increasingly nonlinear, of the Langmuir type, at pH 6 and 7 indicating near-saturation conditions of surface sites at these high pH values. In column experiments, Zn retardation increases and the maximum outlet concentration of Zn decreases with rising pH and acetate concentrations. Previous column tracer experiments revealed the occurrence of regionalized water transport in the column. Modeling these data was based on a non-electrostatic approach. Batch and column data modeling was based on the PHREEQC code that allows concomitant resolution of chemical speciation and regionalized water transport. The speciation calculation indicates that the ZnAcetate+ species is the dominant Zn species in the solutions used. Batch experimental curves are correctly modeled assuming the formation of the three surface species triple bond SiOZn+, triple bond SiOH-Zn Acetate+ and triple bond SiO-Zn(Acetate)2-. The column data could be adequately modeled assuming a two-region water transport and the formation of the same three species with the same thermodynamic constants determined in the batch experiments. The hypothesis of the modeling leads to a slight overestimation of the quantities of zinc eluted (10%) at pH 6 and 7, mostly in the desorption phase. These results show that the methodology used facilitates the correct modeling of both batch and transport experiments and formulation of the hypothesis on the interactions between the low reactive sand and a complex solution.  相似文献   

20.
采用氯化钠溶液对甘肃白银天然沸石改性,以低浓度氨氮(NH4+-N)废水为处理对象,对比了天然沸石和改性沸石的动态吸附特性并绘制穿透曲线,利用Origin软件对实验数据分析处理,得出穿透曲线的通式。结果表明:在相同条件下,改性沸石的穿透时间和吸附饱和时间都比天然沸石的长约1.5倍;沸石经氯化钠改性后,对NH4+-N的吸附速率和饱和吸附量都明显提高,吸附性能显著改善。Origin软件对水溶液中NH4+-N的吸附穿透曲线的Logistic模型回归式具有较高的精度,该模型可以很好地反映沸石吸附剂的动态吸附过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号