首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
锅炉给水除氧及氧化还原树脂除氧技术   总被引:1,自引:0,他引:1  
霍银坤 《环境保护》1994,(9):38-40,44
一、水中溶氧对锅炉的腐蚀1.溶氧腐蚀的原理锅炉钢铁表面与水接触会发生电化学腐蚀.2Fe→Fe~(3+)+2e 阳极反应Fe~(2+)→Fe~(2+)+eO_2+2H_2O+4e→4OH~-阴极反应溶氧腐蚀的电化学反应式为:  相似文献   

2.
海水环境生物腐蚀污损与防护   总被引:5,自引:2,他引:3  
以海水环境生物腐蚀污损与防护为中心,就国内外与其相关的报道进行综述分析,并提出建议。首先,分析污损生物的分布与特征,得出污损生物群落的组成和结构对海域、季节、水深、工程结构类型等的依赖性,突出海水环境生物腐蚀污损的复杂性。然后,解析生物附着污损对海水环境腐蚀速率的影响,突出附着生物是导致金属材料腐蚀速率增大的重要因子。再次,介绍海水环境生物腐蚀污损防护技术的现状,分析主要防护技术的优缺点,并展示其在不同行业的联用。最后,提出对海水环境生物腐蚀污损研究工作的建议,包括建立各海域的生物腐蚀污损数据库、大力研制发展绿色生物腐蚀污损控制技术、加强对海洋生物腐蚀污损基础性研究工作的投入、尽快建立海洋生物腐蚀评价标准和规范等。  相似文献   

3.
碳钢在海水环境中的腐蚀和污损特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
讨论了碳钢材料在海水环境中的腐蚀速率随时间的变化情况,总结了碳钢在海水中不同暴露阶段的腐蚀和生物污损特性。结果显示,碳钢在海水中的腐蚀速度随时间延长而下降,暴露1~2年后腐蚀速率变化不显著,其腐蚀过程可分为腐蚀过程控制阶段、氧扩散控制阶段、污损生物成长控制阶段和微生物腐蚀控制阶段等4个阶段。  相似文献   

4.
实验采用SBR工艺,在限氧曝气条件下,研究自养亚硝化(进水中不含有机碳)过程中N_2O的释放特征。结果表明,在限氧自养亚硝化过程中,不同进水氨氮浓度条件下的溶解氧浓度均为(0.08±0.02)mg/L,氨氧化速率基本不受氨氮浓度变化的影响,即自养亚硝化反应呈零级反应。进水氨氮浓度为60,120,240 mg/L时的N_2O释放总量分别为3.24,8.75,24.59 mg/L,相应的N_2O释放因子依次为0.12、0.17和0.22。限氧曝气条件下,氨氧化菌(AOB)反硝化产生N_2O占主导作用。进水氨氮浓度越高时,亚硝化过程需时越长,后期NO-2-N累积量越大,导致AOB反硝化产生N_2O的速率越大,N_2O释放总量和释放因子(N_2O释放量/NH+4-N去除量)也越大。  相似文献   

5.
活性炭纤维电极产生过氧化氢的影响因素与机制研究   总被引:3,自引:1,他引:2  
以活性炭纤维为阴极、RuO2/Ti网为阳极、Na2SO4为支持电解质的电化学体系为研究对象,研究了电流强度、pH值和溶解氧含量等主要参数对电化学体系产生H2O2的影响.结果显示,在电流强度0.12~0.50 A范围内,H2O2的生成量随着电流强度增大而升高,反应60 min后,H2O2浓度可达稳定值;电化学体系具有较宽泛的pH范围,初始pH在2.0~6.0时活性炭纤维阴极产生的H2O2均高于500μmol.L-1,pH 2.0时H2O2生成量最大,可达575.8μmol.L-1;体系中溶解氧浓度影响H2O2的电化学生成量,溶解氧浓度越高H2O2生成量越大;无背景气体通入时,电化学体系自身产生的溶解氧可以支持活性炭纤维阴极产生高浓度的H2O2.研究结果表明具有高比表面积的活性炭纤维电极是一种高效的电-Fenton阴极.  相似文献   

6.
以废旧印刷线路板粉末为原材料,采用压片电解方法回收单质铜,研究了CuSO_4·5H2O浓度、H_2SO_4浓度、电流密度、电解时间和NaCl浓度对电解过程中Cu分布特性的影响。结果表明:废旧印刷线路板中的Cu以Cu2+的形式进入溶液,最终以粉末形式沉积在阴极;过高的H_2SO_4浓度、电流密度和NaCl浓度会导致析氢反应等,从而降低Cu在阴极和溶液中的分布;当CuSO_4·5H_2O浓度、H_2SO_4浓度、电流密度、电解时间、NaCl浓度分别为50 g/L、6 mol/L、80 m A/cm~2、5 h、40 g/L时,Cu在阴极、溶液、阳极泥中的分布比率分别为63.16%、34.14%和2.70%。  相似文献   

7.
如何将废旧线路板生物浸出液中离子态铜以高品位单质形式回收是实现生物浸出回收金属的关键环节.本研究采用电沉积法,考察了模拟废旧线路板生物浸出液在恒流条件下阴极材料、电流密度、初始pH和初始铜浓度对铜回收效率和能耗的影响.结果表明,比表面积越大的阴极材料(碳毡)对铜的回收效率越高,阳极室和阴极室铜回收效率分别为96.56%、99.25%,总能耗和单位产物能耗越小,分别为0.022 kW·h、15.71 kW·h·kg-1.随着电流密度的增大铜回收效率和能耗呈上升趋势,当电流密度为155.56 mA·cm-2,阳极室和阴极室铜回收效率均达最大,分别为98.51%、99.37%,总能耗和单位产物能耗达最高,分别为0.037 kW·h、24.34 kW·h·kg-1.初始铜离子浓度对铜回收效率有明显影响,初始铜离子浓度越高,铜离子浓度下降的越快,总能耗越高,单位产物能耗越小.而初始pH值对铜回收效率没有明显影响.在优选条件下,阴极材料为碳毡,电流密度为111.11 mA·cm-2,初始pH=2.0,初始铜浓度为10 g·L-1,阳极室和阴极室铜回收效率分别为96.75%、99.35%,总能耗和单位产物能耗分别为0.021 kW·h、14.61 kW·h·kg-1,沉积的铜在阴极材料表面呈束状分布且未检测到氧的存在.  相似文献   

8.
电化学-臭氧耦合氧化体系的氧化效能   总被引:2,自引:2,他引:0  
周琦  张蓉  王勋华  童少平  马淳安 《环境科学》2010,31(9):2080-2084
利用电化学-臭氧耦合氧化体系降解了水中的对氯苯酚,从动力学角度探讨了耦合氧化体系降解有机物的协同作用机制.结果表明,电化学与臭氧耦合氧化体系降解4-CP具有明显的协同效果,900 s后,该耦合氧化体系对4-CP和COD的去除率分别为92.7%和64.9%;而单独电解与单独臭氧氧化对上述两者去除率的之和仅有69.7%和30.1%.氧还原产物H2O2浓度和光电流的测试结果表明,电化学-臭氧耦合氧化体系的协同机制包括两部分:即臭氧在阴极表面得到电子生成臭氧负离子;溶解氧在阴极表面发生还原反应生成H2O2.以上2个因素均能有效地促进体系.OH的形成.  相似文献   

9.
吕永涛  赵洁  王磊  鞠恺  贾燕妮 《环境工程》2015,33(11):48-53
污水生物脱氮过程中会释放一种强温室气体——N2O,为了从微观层面查明N2O的产生来源,利用N2O微电极对城市污水处理厂A2/O工艺中污泥基团内部N2O的产生特性及微环境条件进行了研究,并辅助利用NH+4、NO-3、NO-2、DO及p H微电极探究氮素迁移转化特征。结果表明,N2O主要是在缺氧池和好氧池释放,在缺氧池最多,且缺氧前段多于后段;好氧池DO浓度越低,污泥基团内部N2O的生成浓度越高,意味着释放的N2O越多;在厌氧池最少,污泥基团内N2O产生浓度仅为25μmol/L。由此可推断缺氧池中进行的反硝化反应和好氧池中的氨氧化作用是A2/O工艺N2O产生的两大来源。  相似文献   

10.
长江溶存氧化亚氮的分布与释放   总被引:7,自引:2,他引:5  
赵静  张桂玲  吴莹  张经 《环境科学学报》2009,29(9):1995-2002
于2008年1月对长江宜昌到徐六泾段干流以及部分湖泊和支流入江口进行了调查,并于2007年6月到2008年5月对长江徐六泾进行了逐月调查,采样测定了长江溶存N2O的浓度并选择合适的模型估算了其释放通量.结果表明,2008年1月长江表层河水中N2O的平均浓度为(22.0±3.5)nmo·lL-1,均处于过饱和状态,平均饱和度为180%±33%,长江向大气释放N2O通量平均为(13.7±14.6)μmol·m-·2d-1.冬季长江溶存N2O的分布规律为下游溶存N2O浓度高于中游,支流及湖泊高于干流.长江徐六泾段河水中N2O全年平均浓度为(19.4±7.3)nmol·L-1,呈现明显季节变化特征.长江徐六泾段河水中N2O平均释放通量为(43.9±24.9)μmol·m-2·d-1,夏季最高可达80.7μmol·m-·2d-1.初步估算出长江每年向大气释放N2O-N的量为12.0Gg·a-1,约占整个中国N2O排放量的1.1%.而长江输入东、黄海N2O-N的年通量为0.5Gg·a-1,对长江口及其邻近海域N2O分布及氮的生物地球化学循环有重要影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号