首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Megrim, Lepidorhombus whiffiagonis, and four spot megrim, Lepidorhombus boscii, are two marine fish species of high commercial interest. Despite their quite heavy exploitation little is known on the genetic structure of their populations. The present work aimed at characterizing the first seven microsatellites markers available for the two megrim species. These new markers were in a second step employed to describe the population structure of the two species among their almost entire habitat range (Atlantic and Mediterranean samples). Our study confirmed the existence of a strong genetic difference between Atlantic and Mediterranean megrim species already described in the literature for L. whiffiagonis on the basis of variations at ribosomal genes. Additionally our analysis gave the first evidences of a strong genetic differentiation among Atlantic populations in both megrim species (within Atlantic global FST in L. whiffiagonis and L. boscii were respectively 0.158 and 0.145). When describing megrim population structure, the comparison between allele-frequency-based tests (FST comparisons) and genotype-based inferences (Bayesian approach) gave evidences of a hierarchical structure of the populations. In conclusion, our work enlighten the existence of two different stocks within the Atlantic Ocean and one in the Mediterranean Sea that will clearly need to be managed separately. As the present results do not fully support the current megrim stock boundaries they will surely help to rethink megrim management policies in the future.  相似文献   

2.
Genetic diversity among four natural samples of Blackspot seabream (Pagellus bogaraveo, Brünnich, 1768) from different fishing grounds exploited by Spanish fisheries was analyzed through the use of 12 microsatellite markers. The samples were captured off the Spanish coasts from the Mediterranean Sea to the Cantabrian Sea within the same continental slope. High levels of genetic diversity were revealed for every population and every locus was polymorphic at the 0.95 level. The average number of alleles, average heterozygosity and PIC were found to be 15.75, 0.833 and 0.818, respectively. In general, population differentiation was not detected in these samples. Through AMOVA, a low level of variation between regions (Mediterranean vs. Atlantic samples) was observed, though this was not significant. A larger percentage of total variation was observed inside the ‘within populations’ class. Thus, AMOVA did not reveal any significant population substructure. Moreover, no correlation was found between geographical and FST estimates and the observed results did not allow the improvement of a model of isolation by distance. The high homogeneity revealed by means of these markers could indicate the absence of physical frontiers between the geographical areas analyzed in this survey, especially between Atlantic and Mediterranean areas.  相似文献   

3.
4.
Variations at 22 enzyme coding loci were surveyed in 11 populations of the oyster Ostrea edulis L., which were sampled between 1988 and 1990 along the Atlantic and Mediterranean coasts of Europe. Atlantic oyster beds suffered a steady decline during the last century, and restocking of beds with oysters of foreign origin has probably resulted in a high degree of interbreeding of natural oyster stocks from all Atlantic Europe. Our study confirms the low levels of genetic variability previously reported for the oyster populations from the Atlantic coasts, and extends it to the Mediterranean coasts. The locus arginine-kinase (ARK *) exhibited a high degree of interpopulation differentiation (F ST=0.289), resulting from extensive variation in gene frequencies along a geographical cline. However, the overall genetic differentiation between populations was slight, and similar to that reported for other local populations of bivalves (mean genetic distance between populations is 0.010, mean F ST=0.062). A general pattern of increasing differentiation along the coastline in an Atlantic-mediterranean direction emerged; but genetic differentiation among the Atlantic populations was not significantly lower than that observed among the Mediterranean populations. This and other results suggest that the effects of extensive transplantation of oysters among various areas in Europe are detectable only in some particular localities. The geographical distribution of low-frequency alleles suggests a restriction to gene flow outwards from the Mediterranean Sea, across the Straits of Gibraltar.  相似文献   

5.
We studied the genetic structure of the Mediterranean killifish Aphanius fasciatus. Analysis of the sequence variation in a 372-bp portion of the mitochondrial control region in 623 fish from 27 sampling sites along the species’ distributional range (Tyrrhenian coast, Sardinia, Sicily, Adriatic coast, Malta, Tunisia, and Greece) yielded 120 distinct haplotypes. Most of the haplotypes are unique, and only 15 % are shared among different populations. The high F ST value (=0.80) suggests a strong population genetic structuring. The phylogenetic analysis based on Bayesian inference, maximum likelihood and maximum parsimony, and the median-joining network show a sharp separation of the Southeastern Sicilian populations (belonging to the Hyblean region) and of the fluvial Tunisian population of Rio Melah from the others. The Adriatic, the Eastern Sicilian, and the Greek populations are well differentiated, while the group of populations from the Central-Western Mediterranean does not show a clear pattern of differentiation. Our findings indicate that the current genetic structuring of A. fasciatus reflects historical geographical patterns occurring within the Mediterranean basin from the Late Miocene to the Pleistocene. The presence of divergent evolutionary entities in the Hyblean region and the Tunisian Rio Melah supports their inclusion as target areas for the conservation of A. fasciatus.  相似文献   

6.
The existence of three distinct populations is widely accepted for the finless porpoise (Neophocaena phocaenoides) in Chinese waters: the Yellow Sea, Yangtze River, and South China Sea populations. Here, we use nine species-specific microsatellite loci, the complete mitochondrial DNA control region (912 bp), and the complete mitochondrial cytochrome b gene (1,140 bp) to further investigate potential population stratification in the Yellow Sea using 147 finless porpoise samples from the Bohai Sea and adjacent northern Yellow Sea, two regions that were largely underrepresented in previous genetic studies. Our F-statistics analyses confirm the previously described three populations, but further demonstrate significant genetic differentiation between the [Bohai + northern Yellow] Sea and the southern Yellow Sea. On the other hand, median-joining network analyses do not exhibit well-differentiated haplotype groups among different geographic populations, suggesting the existence of shared ancestral haplotypes. Levels of microsatellite diversity are moderate to high (mean H E = 0.794) among the 147 [Bohai + northern Yellow] Sea finless porpoises and no recent bottleneck was detected, whereas mtDNA control region and cytochrome b gene diversity is low to moderate. The microsatellite genotypic and mtDNA haplotypic data also confirm the presence of mother-calf pairs in single-net bycatch cases. The results presented here highlight the necessity to treat the [Bohai + northern Yellow] Sea population (highly impacted by anthropogenic threats) as a separate Management Unit.  相似文献   

7.
Eight polymorphic microsatellite loci were analysed in six population samples from four locations of the Australian endemic brown tiger prawn, Penaeus esculentus. Tests of Hardy–Weinberg equilibrium were generally in accord with expectations, with only one locus, in two samples, showing significant deviations. Three samples were taken in different years from the Exmouth Gulf. These showed no significant heterogeneity, and it was concluded that they were from a single panmictic population. A sample from Shark Bay, also on the west coast of Australia, showed barely detectable differentiation from Exmouth Gulf (F ST = 0 to 0.0014). A northeast sample from the Gulf of Carpentaria showed low (F ST = 0.008) but significant differentiation from Moreton Bay, on the east coast. However, Exmouth Gulf/Shark Bay samples were well differentiated from the Gulf of Carpentaria/Moreton Bay (F ST = 0.047–0.063). The data do not fit a simple isolation by distance model. It is postulated that the east–west differentiation largely reflects the isolation of east and west coast populations that occurred at the last glacial maximum when there was a land bridge between north-eastern Australia and New Guinea.  相似文献   

8.
Population genetic structure of the thorny skate (Amblyraja radiata) was surveyed in >300 individuals sampled from Newfoundland, Iceland, Norway, the Kattegat and the central North Sea. A 290-bp fragment of the mt cytochrome-b gene was first screened by SSCP. Sequences of SSCP haplotypes revealed 34 haplotypes, 14 of which were unique to Iceland, 3 to Newfoundland, 1 to Norway and 3 to the Kattegat. The global F ST was weak but significant. Removal of the two Kattegat locations, which were the most differentiated, resulted in no significant genetic differentiation. Haplotype diversity was high and evenly distributed across the entire Atlantic (h = 0.8) with the exception of the North Sea (h = 0.48). Statistical parsimony revealed a star-like genealogy with a central widespread haplotype. A subsequent nested clade analysis led to the inference of contiguous expansion with evidence for long distance dispersal between Newfoundland and Iceland. Historical demographic analysis showed that thorny skates have undergone exponential population expansion that started between 1.1 million and 690,000 years ago; and that the Last Glacial Maximum apparently had little effect. These results strongly differ from those of a parallel study of the thornback ray (Raja clavata) in which clear structure and former refugial areas could be identified. Although both species have similar life history traits and overlapping ranges, the continental shelf edge apparently does not present a barrier to migration in A. radiata, as it does for R. clavata.  相似文献   

9.
The tarpon (Megalops atlanticus) is a highly valued game fish and occasional food fish in the eastern and western Atlantic Ocean. Tarpon have a high capacity for dispersal, but some regional biological differences have been reported. In this study we used two molecular genetic techniques—protein electrophoresis of nuclear DNA loci, and restriction fragment length polymorphism analysis of the mitochondrial DNA (mtDNA)—to assess this species population genetic structure in the eastern (coastal waters off Gabon and Sierra Leone, Africa) and western (coastal waters off Florida, Caribbean Sea) Atlantic Ocean north of the equator. Genetic differentiation was observed between tarpon from Africa and tarpon from the western Atlantic Ocean. A unique allele and haplotype, significant differences in allozyme allele and mtDNA haplotype frequencies between the African and western Atlantic samples, and significant FST analyses suggest that levels of gene flow between tarpon from these two regions is low. Among the western Atlantic Ocean collections, genetic diversity values and allele and haplotype frequencies were similar. AMOVA analyses also showed a degree of genetic relatedness among most of the western Atlantic Ocean collections: however, some significant population structuring was detected in the allozyme data. A regional jackknifed FST analysis indicated the distinction of the Costa Rica population from the other western Atlantic populations and, in pairwise analyses, FST values tended to be higher (i.e., genetic relatedness was lower) when the Costa Rican sample was paired with any of the other western Atlantic samples. These data suggest that Costa Rican tarpon could be partially isolated from other western Atlantic tarpon populations. Ultimately, international cooperation will be essential in the management of this species in both the eastern and western Atlantic Ocean.Communicated by P.W. Sammarco, Chauvin  相似文献   

10.
The pelagic copepod Calanus pacificus ranges nearly continuously across temperate-boreal regions of the North Pacific Ocean and is currently divided into three subspecies—C. pacificus oceanicus, C. pacificus californicus, C. pacificus pacificus—based on subtle morphological differences and geographic location. The relation between geography and genetic differentiation was examined for 398 C. pacificus individuals sampled from six widely distributed locations across the North Pacific, including an open ocean site and coastal sites on both sides of the North Pacific basin. For each individual copepod, the DNA sequence was determined for a 421-bp region of the mitochondrial coxI gene (mtCOI). A total of sixty-three different mtCOI sequences, or haplotypes, were detected, with a sequence divergence between haplotypes of 0.2–3.1%. The number and distribution of haplotypes varied with sampling location; 12 haplotypes were distributed across multiple sampling locations, and 51 occurred at only one location. Five genetically distinct populations were detected based on F ST values. Haplotype minimum spanning networks, nucleotide divergence and F ST values indicated that individuals from coastal sites in the North Pacific Ocean were more closely related to each other than to individuals from the open ocean site at Station P. These results provide genetic support for the designation of two subspecies—a coastal subspecies that consists of what is currently referred to as C. p. pacificus and C. p. californicus and an open ocean subspecies C. p. oceanicus. This work also indicates that planktonic copepods with potentially high dispersal capacity can develop genetically structured populations in the absence of obvious geographic barriers between proximate locales within an ocean basin.  相似文献   

11.
Genetic variability within the Cuban population of the white shrimp Litopenaeus schmitti (Burkenroad, 1936) was assessed using five microsatellite loci and samples collected from four sites (Batabanó, Cienfuegos, Tunas de Zaza, and Manzanillo) from November 1999 to March 2000. All loci were polymorphic, and a total of 80 alleles were found, 13 of them private alleles occurring only in a single population and always in low frequencies. The Cienfuegos sample had the highest observed heterozygosity (Ho=0.653), and the Tunas de Zaza sample had the lowest values (Ho=0.605), but there were no significant differences among samples in heterozygosity or in the mean numbers of alleles per locus (ranging from 11.0 to 11.6). Significant differentiation among populations was detected (FST=0.012, P<0.001). Low but significant FST values were revealed in pairwise comparisons between populations. Assignation tests correctly assigned high percentages of individuals to their original populations (74.5%) using a Bayesian approach. The significant differentiation among populations could be due to the restriction of gene flow among populations of L. schmitti and is concordant with previous allozyme studies on Cuban populations.Communicated by J.P. Grassle, New Brunswick  相似文献   

12.
Discrete estuary subpopulations of the mud crab Hemigrapsus oregonensis (Dana, 1851) are connected via larval dispersal. Sequence variation at the mtDNA COI locus was examined in eight populations sampled in 2001–2002 from central California through northern Oregon in the northeast Pacific (36.6–45.8°N) to infer patterns of dispersal and historical connectivity in the region. Strong evidence for persistence since the mid-Pleistocene, with no range truncation resulting from southward shifting temperature isoclines, was provided by a phylogeographic pattern of haplotypes of an older clade distributed throughout the sampled range. A recently derived clade became widespread only north of Cape Blanco after the last glacial maximum. Its clear pattern of restriction to the northern area, in the absence of similarly restricted southern clades, suggests that contemporary dispersal around Cape Blanco is rare (population F ST = 0.192). Low pairwise differentiation within Oregon and within central California, as well as contrasts between northern and southern groups in the shape of the pairwise mismatch distribution, nucleotide diversity, and Tajima’s D suggest that these regions reflect different demographic histories. Potential mechanisms explaining this latitudinal break include contemporary coastal circulation patterns, selection, and ancient patterns of larval dispersal in the California Current.  相似文献   

13.
The genetic structure of seven sailfish Istiophorus platypterus populations sampled from three locations inside and four locations outside the Arabian Gulf was determined by restriction fragment length polymorphism analysis of mitochondrial DNA of 147 individuals using eight restriction endonucleases. A total of 39 composite haplotypes derived from 27 presumptive restriction sites demonstrated significant differences in frequency between population groups inside and outside the Gulf (analysis of molecular variance 34.80%, P<0.001; FST=0.356) and evidence of restricted migration between them (average number of migrants, Nm=0.903). Haplotypes found only inside or outside the Gulf clustered to all major branches of a haplotype phylogeny, as did those found in both areas. The reduced genetic diversity of the Gulf populations and the fact that much of the differentiation between the population groups resulted from differences in haplotype frequency rather than divergence between haplotypes suggest a founder effect and a recent sampling of genotypes from the Indian Ocean. This was probably associated with dispersal into the Gulf after it was flooded by rising sea level after the end of the last glaciation around 8,000 years ago. At some point since then the population has evolved to complete its life cycle within the Gulf and shows a marked disruption to gene flow, consistent with dispersal data, at the Strait of Hormuz. These findings represent the first clear evidence of phylogeographic isolation occurring in a large, highly vagile, predatory istiophorid billfish, within a marginal sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

14.
Despite high potential for dispersal, the purple sea urchin Strongylocentrotus purpuratus was found to have significant genetic subdivision among locations. Ten geographic locations along the coast of California and Baja California were sampled between 1994 and 1995. Samples from some locations included both adult and recruit urchins. Allozyme analyses revealed a genetic mosaic, where differentiation over short geographic distances could exceed differentiation over much larger distances. Significant allozyme differentiation was found among subpopulations of adults (standardized variance, F ST =0.033), among subpopulations of recruits (F ST =0.037), and between adults and recruits from the same location. DNA-sequence data for the mitochondrial cytochrome oxidase I gene also showed significant heterogeneity among locations, with a mild break in haplotype frequencies observed 300 km south of Point Conception. California. Repeated sampling over time is necessary to determine whether these patterns of differentiation are stable and to begin to understand what forces produce them.  相似文献   

15.
The red porgy, Pagrus pagrus (L.), is a protogynous sparid associated with reefs and hard bottom habitat throughout the warm-temperate Atlantic Ocean. In this study, the degree of geographic population differentiation in Atlantic populations was examined with microsatellite and mitochondrial DNA markers (mtDNA). Six microsatellite loci were amplified and scored in 690 individuals from the eastern North Atlantic (Crete, Madeira, and Azores), western North Atlantic (North Carolina to Florida, and the eastern Gulf of Mexico), and Brazil. At two loci, fixed allelic differences were found among the three major geographic areas, while frequency differences were observed at three other loci. The DNA of 371 individuals was amplified at the mtDNA control region, and 526 bp were sequenced. Tamura–Nei’s D was used as a measure of nucleotide diversity and divergence: diversity averaged 0.011 within samples, while the corrected divergence averaged 0 between samples within the same area and 0.061 between samples from different areas. Transversion haplotype minimum spanning networks, nucleotide divergence, and F ST values all show that the western Atlantic samples were more closely related to each other than any was to samples from the eastern North Atlantic. Within the western North Atlantic, no significant population differentiation was observed, and within the eastern North Atlantic, only the Azores sample showed detectable differences from Crete and Madeira. These data indicate general homogeneity within large areas, and deep divisions between these areas. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

16.
The wahoo, Acanthocybium solandri (Cuvier, 1832), is a pelagic, highly migratory, scombroid fish, distributed worldwide throughout tropical and warm temperate seas. To evaluate population genetic and phylogeographic structure against a null hypothesis of panmixia, the entire mitochondrial DNA control-region (~890 base pairs) was sequenced for 231 wahoo. Samples were collected from 1997 to 2001 from seven sites: North Carolina (NC; n=23), east central Florida (CF; n=30), Bimini, Bahamas (BB; n=40), southern tip of Florida (SF; n=21), Cayman Islands (CI; n=23), northern Gulf of Mexico (NG; n=54), and Hawaii (HI; n=40). Inter-annual samples were obtained from four of these locations (NC, BB, SF, NG). Seventeen haplotypes were shared by individuals within and among samples; 187 singleton haplotypes were observed. Within-sample haplotype diversities ranged from 0.995 to 1.000 (overall h=0.999) and within-sample nucleotide diversities ranged from 0.049 to 0.055 (overall =0.053). A neighbor-joining tree based on inter-haplotypic distances revealed two monophyletic lineages differing by 13.6% nucleotide divergence. Nested within each major lineage were several, well-supported subclades. There was no evidence of temporal heterogeneity in haplotype distributions. Partitioning mtDNA variation, 99.75% of the variance was within samples and 0.25% (P=0.307) between samples; the fixation index (ST=0.0025) was not significant. Likewise, pairwise ST values were low or negative, and none were significant on a table-wide basis. Exact tests for sample differentiation in haplotypes were also non-significant. All population analyses were consistent with the null hypothesis of panmixia. However, analytical power was limited by sample size. Mismatch distributions were inconsistent with expected distributions based on sudden-expansion and static-growth models. Wahoo exhibit concurrently high haplotype and nucleotide diversities, presumably a consequence of secondary contact between historical subpopulations rather than a long, stable evolutionary history. Given the level of geographic and individual sampling, wahoo thus far represent the sole example of a scombroid or xiphioid fish exhibiting coarse-grain genetic homogeneity across a broad, inter-oceanic range despite a deeply coalescing genealogical structure. Accordingly, cooperative fishery management on a broad, inter-ocean scale may be warranted.Communicated by J.P. Grassle, New Brunswick  相似文献   

17.
Mating system and dispersal patterns influence the spatio-genetic structure within and between populations. Among mammals, monogamy is rare, and its socio-genetic consequences have not been studied in detail before. The goal of our study was to investigate population history, demographic structure, and dispersal patterns in a population of pair-living fat-tailed dwarf lemurs, Cheirogaleus medius, a small, nocturnal primate from western Madagascar, and to infer their underlying behavioral mechanisms. Tissue samples for DNA extraction were obtained from a total of 140 individuals that were captured in two subpopulations about 3 km apart. Analyses of mtDNA variability at the population level revealed very low levels of genetic variability combined with high haplotype diversity, which is indicative of a recent population bottleneck. We found no evidence for spatial clustering of same-sexed individuals with identical haplotypes within each of two subpopulations but significant clustering between them. Thus, a high level of local subpopulation differentiation was observed (F ST = 0.230). The sexes showed equal variances in the number of individuals representing each haplotype, as well as equal levels of aggregation of identical haplotypes. Hence, both sexes disperse from their natal area, one pattern expected in a pair-living mammal. There is a possibility of behavioral and social flexibility in this species, however, because we documented pronounced differences in density and sex ratio between the two subpopulations, suggesting that single study sites or populations may not be representative of a given local population or even species.  相似文献   

18.
The genetic population structures of Atlantic northern bluefin tuna ( Thunnus thynnus thynnus) and albacore ( T. alalunga) were examined using allozyme analysis. A total of 822 Atlantic northern bluefin tuna from 18 different samples (16 Mediterranean, 1 East Atlantic, 1 West Atlantic) and 188 albacore from 5 samples (4 Mediterranean, 1 East Atlantic) were surveyed for genetic variation in 37 loci. Polymorphism and heterozygosity reveal a moderate level of genetic variability, with only two highly polymorphic loci in both Atlantic northern bluefin tuna ( FH* and SOD- 1*) and albacore ( GPI- 3* and XDH*). The level of population differentiation found for Atlantic northern bluefin tuna and albacore fits the pattern that has generally been observed in tunas, with genetic differences on a broad rather than a more local scale. For Atlantic northern bluefin tuna, no spatial or temporal genetic heterogeneity was observed within the Mediterranean Sea or between the East Atlantic and Mediterranean, indicating the existence of a single genetic grouping on the eastern side of the Atlantic Ocean. Very limited genetic differentiation was found between West Atlantic and East Atlantic/Mediterranean northern bluefin tuna, mainly due to an inversion of SOD- 1* allele frequencies. Regarding albacore, no genetic heterogeneity was observed within the Mediterranean Sea or between Mediterranean and Azores samples, suggesting the existence of a single gene pool in this area.  相似文献   

19.
White shrimp (Litopenaeus vannamei) population genetic structure from the eastern Pacific was determined by restriction fragment length polymorphism analysis of the mitochondrial DNA control region. Four localities were surveyed with four endonucleases (Alu I, Taq I, Spe I, Ssp I) yielding 48 composite haplotypes. White shrimp showed high average within-locality haplotype (0.823) and nucleotide (5.41%) diversities and also high average nucleotide divergence between all pairs of localities (0.73%). A mismatch analysis of pairwise differences between haplotypes indicated that white shrimp does not fit the sudden population expansion model. An analysis of molecular variance showed significant geographic variation in the frequencies of haplotypes (ΦST=0.1382, P<0.0001). Population differentiation may be maintained by a combination of physical, oceanographic, and biological factors acting as barriers to gene flow among localities. Because of its high polymorphism, the control region might be useful as a genetic marker for monitoring genetic diversity in aquaculture stocks.  相似文献   

20.
This paper reports data on 28 allozyme loci in wild and artificially reared sea bass (Dicentrarchus labrax) samples, originating from either coastal lagoon or marine sites in the Mediterranean Sea. F ST analysis (θ estimator) indicated strong genetic structuring among populations; around 34% of the overall genetic variation is due to interpopulation variation. Pairwise θ estimates showed that, on average, the degree of genetic structuring was much higher between marine populations than between samples from lagoons. Six polymorphic loci showed differences in allele frequencies between marine and lagoon samples. Multivariate analyses of individual allozymic profiles and of allele frequencies suggested that different arrays of genotypes prevail in lagoons compared to marine samples, particularly at those loci that, on the basis of previous acclimation experiments, had been implicated in adaptation to freshwater. On the other hand, variation at “neutral” allozyme loci reflects to a greater extent the geographic location of populations. Allozyme differentiation was also studied in a D. labrax population from the Portuguese coast. Average genetic distance between this population and the Mediterranean populations was quite high (Nei's D = 0.236) and calls into question the taxonomic status of the Portuguese population. Finally, genetic relationships between D. labrax and D. punctatus were evaluated. Average Nei's D was 0.648, revealing high genetic differentiation between the two species, even for two sympatric populations of these species in Egypt; thus gene flow was not indicated between species. Received: 24 October 1996 / Accepted: 27 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号