首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Dry weather runoff in arid, urban watersheds may consist entirely of treated wastewater effluent and/or urban nonpoint source runoff, which can be a source of bacteria, nutrients, and metals to receiving waters. Most studies of urban runoff focus on stormwater, and few have evaluated the relative contribution and sources of dry weather pollutant loading for a range of constituents across multiple watersheds. This study assessed dry weather loading of nutrients, metals, and bacteria in six urban watersheds in the Los Angeles region of southern California to estimate relative sources of each constituent class and the proportion of total annual load that can be attributed to dry weather discharge. In each watershed, flow and water quality were sampled from storm drain and treated wastewater inputs, as well as from in‐stream locations during at least two time periods. Data were used to calculate mean concentrations and loads for various sources. Dry weather loads were compared with modeled wet weather loads under a range of annual rainfall volumes to estimate the relative contribution of dry weather load. Mean storm drain flows were comparable between all watersheds, and in all cases, approximately 20% of the flowing storm drains accounted for 80% of the daily volume. Wastewater reclamation plants (WRP) were the main source of nutrients, storm drains accounted for almost all the bacteria, and metals sources varied by constituent. In‐stream concentrations reflected major sources, for example nutrient concentrations were highest downstream of WRP discharges, while in‐stream metals concentrations were highest downstream of the storm drains with high metals loads. Comparison of wet vs. dry weather loading indicates that dry weather loading can be a significant source of metals, ranging from less than 20% during wet years to greater than 50% during dry years.  相似文献   

2.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   

3.
Recent compilations of historical and contemporary riverine nitrate (NO3) concentrations indicate that concentrations in many rivers in the north-central USA increased during the second half of the 20th century. The Des Moines River near Des Moines, Iowa, however, was reported to have had similar NO3 concentrations in 1945 and the 1980s, in spite of substantially greater N input to the watershed during the latter period. The objective of this study was to reconsider the comparison of historical and contemporary NO3 concentrations in the Des Moines River near Des Moines in light of the following: (i) possible errors in the historical data used, (ii) variations in methods of sample collection, (iii) variations in location of sampling, and (iv) additional data collected since 1990. We discovered that an earlier study had compared the flow-weighted average concentration in 1945 to arithmetic annual average concentrations in the 1980s. The intertemporal comparison also appeared to be influenced by differences in sample collection methods and locations used at different times. Depending on the model used and the estimated effects of composite sample collection, the 1945 arithmetic average NO3 concentration was between 44 and 57% of the expected mean value at a similar water yield during 1976-2001. The flow-weighted average NO3 concentration for 1945 was between 54 and 73% of the expected mean value at a similar water yield during 1976-2001. The difference between NO3 concentrations in 1945 and the contemporary period are larger than previously reported for the Des Moines River.  相似文献   

4.
Various techniques exist to estimate stream nitrate loads when measured concentration data are sparse. The inherent uncertainty associated with load estimation, however, makes tracking progress toward water quality goals more difficult. We used high‐frequency, in situ nitrate sensors strategically deployed across the agricultural state of Iowa to evaluate 2016 stream concentrations at 60 sites and loads at 35 sites. The generated data, collected at an average of 225 days per site, show daily average nitrate‐N yields ranging from 12 to 198 g/ha, with annual yields as high as 53 kg/ha from the intensely drained Des Moines Lobe. Thirteen of the sites that capture water from 82.5% of Iowa's area show statewide nitrate‐N loading in 2016 totaled 477 million kg, or 41% of the load delivered to the Mississippi–Atchafalaya River Basin (MARB). Considering the substantial private and public investment being made to reduce nitrate loading in many states within the MARB, networks of continuous, in situ measurement devices as described here can inform efforts to track year‐to‐year changes in nitrate load related to weather and conservation implementation. Nitrate and other data from the sensor network described in this study are made publicly available in real time through the Iowa Water Quality Information System.  相似文献   

5.
ABSTRACT Results of a field survey designed to assess the extent of crop production losses due to inadequate drainage in a large watershed of Iowa is presented. Information on the current status of drainage of the watershed, located in the Des Moines River basin, was collected through personal interviews with 256 farmers from 60 legal drainage districts. The results of the survey indicate that 95 percent of the area in upper Des Moines River basin has inadequate district mains or main outlet drains currently having a design capacity of ≤ 0.64 cm/day drainage coefficient. Outlet capacity of 1.27 cm/day d.c. would be required for full production. Inadequate drainage in the watershed is currently responsible for crop yield reduction equal to about one-third of the maximum yield potential for average weather conditions.  相似文献   

6.
Stream tributaries in the Des Moines River basin have been classified according to the glacial terrain through which they flow. Three stream types were categorized as follows: (1) streams that flow entirely on Wisconsin drift, (2) streams that flow entirely on Kansan drift, and (3) streams that have their headwaters located on new drift but have their lower reaches flowing on older drift. Selected channel and valley characteristics were measured and used to verify the stream type classification. Five variables were chosen for use in a multiple linear discriminatory analysis, which is a statistical technique developed for the purpose of classifying observations into one of several categories which have been predetermined. The streams in each group were verified with the exception of three anomalies based on the probability associated with the largest linear discriminant function. The rationale for the three anomalous streams is not easily determined. But, they are considered to be associated with pre-glacial drainage or at least pre-Wisconsin age drainage. Otherwise, the analysis shows that the major channels and valleys in the Des Moines River basin tend to reflect the glaciated upland surface.  相似文献   

7.
ABSTRACT: A steady-state, one-dimensional water quality model has been formulated to evaluate spatial variations of Biochemical Oxygen Demand, ammonia nitrogen, and dissolved oxygen for nontidal, branched river systems, with point sources of treated wastes and uniform nonpoint-source loads, under aerobic and/or anaerobic stream conditions. For anaerobic conditions, the decay rate of organic matter is assumed to be limited by the rate of oxygen addition to the streams via stream reaeration and net algal photosynthesis and respiration contributions. The model is applicable to stream impact analysis under sustained wet weather conditions, during which storm-runoff loads are generated by storms of sufficiently long duration to approach steady state in the river system.  相似文献   

8.
ABSTRACT: Abundant use of copper based products has resulted in increased violation of copper water quality criteria in runoff from urban storm water systems. The objectives of this work were to understand the mobility and toxicity of copper in an urban watershed and to apportion the amount of copper entering the freshwater receiving stream from different urban land covers using a mass balance approach. Sixteen rainfall events collected from the University of Connecticut study watershed between August 1998 and September 2000 were analyzed to assess copper flux in an urban storm water system. Mean flow weighted dissolved copper concentrations observed in the study for copper based architectural material runoff, pervious area runoff, impervious area runoff, and in the receiving stream were 1210 ± 840, 9 ± 3, 8 ± 2, and 14 ± 7 μg/L, respectively. Mean dissolved copper concentrations in the receiving stream exceeded Connecticut's water quality criteria. Despite exceeding the dissolved concentration based criteria, cupric ion concentrations at the system outlet remained below 0.05 μg/L for all storms analyzed, and no acute toxicity (using Daphnia pulex as the test organism) was measured in samples collected from the stream.  相似文献   

9.
The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed.  相似文献   

10.
Abstract: Runoff from parking lots during summer storms injects surges of hot water into receiving water bodies. We present temperature data collected near urban storm sewer outfalls in Blacksburg, Virginia, using arrays of sensors in a stream and a stormwater pond. Surges occurred roughly a dozen times per month, ranging up to 8.1°C with average duration 2 h in the stream and up to 11.2°C with average duration 7 h in the pond. Surges were larger in the pond due to a larger contributing watershed, no dilution by upstream water, and cool background temperatures near the outfall. Surges began abruptly, warming at rates averaging 0.2°C/min for periods of 5‐20 min. Surges dissipated as they propagated into the water bodies, travelling further in the stream (>19 m) than the pond (~10 m) consistent with greater advection in the stream. Surges were largest and most frequent in the afternoon but occurred at all times of day and night. Stream surges exhibited two phases: an early high‐temperature low‐volume input from the storm sewer and a later low‐temperature high‐volume input from upstream. Surges at the pond did not exhibit two phases, consistent with inputs only from storm sewers. Surges are likely common in urban areas, and may cumulatively have consequences for aquatic organisms, biogeochemical process rates, and even human health. Such effects may be compounded by urban heat islands and climate change, so prevention or mitigation should be considered.  相似文献   

11.
ABSTRACT: This paper describes the Continuous Stormwater Pollution Simulation System (CSPSS) as well as a site-specific application of CSPSS to the Philadelphia urban area and its receiving water, the Delaware Estuary. Conceptually, CSPSS simulates the quantity and quality or urban stormwater runoff, combined sewer overflow, municipal and industrial waste water effuent, and upstream flow on a continuous basis for each time step in the simulation period. In addition, receiving water dissolved oxygen, suspended solids, and lead concentrations resulting from these pollutant sources may be simulated. However, only rceiving water dissolved oxygen (DO) response is considered in this paper. The continuous Do receiving water response model was calibrated to existing conditions usinv observed data at Chester, Pennsylvnia, located on the Delaware Estuary approximately 10 miles down stream from the study area. Average annual pollutant loads to the receiving water were estimated for all major sources and receiving water quality improvements resulting from removal of various portions of these pollutant loads were estimated by application of the calibrated stimultion model. It was found that the removal of oxygen-demanding pollutants from combined sewer overflow and urban stormwater runoff would result in relatively minor improvements in the overall dissoved oxygen resources of the Delaware Estuary; whereas. removal of oxygen demanding pollutants from waste water treatment plant effluent would result in greater improvemens. The results of this investigation can be used along with appropriate economic techniques to identify the most cost-effective mix of point and nonpoint source pollution control measures.  相似文献   

12.
ABSTRACT: This research evaluated concentration data for selected water quality parameters in selected California urban separate storm sewer systems during storm event discharges and during dry weather conditions. We used existing monitoring data from multiple regulatory agencies and municipalities originally collected for compliance or local characterization, which allowed systematic assessment of seasonal patterns over a wide region. Long term mean concentration for most parameters in most streams was higher during storm discharges than during dry weather flows to at least 95 percent confidence in 20 of 45 comparative evaluations, and lower statistical confidence in 22 other comparisons. Some regional differences emerged: in four evaluated streams in the San Francisco Bay Area, total concentration of lead, copper and zinc were lower during dry weather than during storm flows to at least 99.9 percent confidence, with only one exception; while the other four evaluated California streams showed the same tendency, but to much lower statistical confidence.  相似文献   

13.
Abstract: Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater‐treatment‐plant effluent, have been well documented, but other sources, particularly wet‐weather discharges from combined‐sewer‐overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater‐treatment‐plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP‐effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10‐100 μg/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 μg/l, and urban stream‐stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP‐effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2‐butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 μg/l) because CSO effluent is untreated, and were higher in urban‐stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near‐surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay.  相似文献   

14.
ABSTRACT: Habitat diversity and invertebrate drift were studied in a group of natural and channelized tributaries of the upper Des Moines River during 1974 and 1975. Channelized streams in this region had lower sinuosity index values than natural channel segments. There were significant (P=O.05) positive correlations between channel sinuosity and the variability of water depth and current velocity. Invertebrate drift density, expressed as biomass and total numbers, also was correlated with channel sinuosity. Channelization has decreased habitat variability and invertebrate drift density in streams of the upper Des Moines River Basin and probably has reduced the quantity of water stored in streams during periods of low flow.  相似文献   

15.
ABSTRACT: Intensive temporal sampling of rainfall, surface runoff and subsurface drainage, and stream flow upstream and downstream of a suburban mall parking lot yielded expected patterns in time and space. Variations in temperature and conductivity showed strong dilution effects, while patterns of nine elemental concentrations in surface runoff showed a flushing effect early in the storm, following by dilution. Heavy nitrate loads in surface runoff were apparently from rainfall, not surficial sources. For the magnitude of storm studied and the existing study site, local impact on stream flow and water quality, like the run-off itself, is rather ephemeral, and dissipates after about five hours.  相似文献   

16.
ABSTRACT: Cumulative density functions (c.d.f.'s) for water quality random variables may be estimated using data from a routine grab sampling program. The c.d.f. may then be used to estimate the probability that a single grab sample will violate a given stream standard and to determine the anticipated number of violations in a given number of samples. Confidence limits about a particular point on the c.d.f. may be used to reflect the accuracy with which the sample estimate represents the true c.d.f. Methods are presented here for calculating such confidence limits using both a normal model and a nonparametric model. Examples are presented to illustrate the usefulness of an estimated c.d.f. and associated confidence limits in assessing whether an observed number of standard violations is the result of natural variability or represents real degradation in water quality.  相似文献   

17.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

18.
Stream temperatures are key indicators for aquatic ecosystem health, and are of particular concern in highly seasonal, water‐limited regions such as California that provide sensitive habitat for cold‐water species. Yet in many of these critical regions, the combined impacts of a warmer climate and urbanization on stream temperatures have not been systematically studied. We examined recent changes in air temperature and precipitation, including during the recent extreme drought, and compared the stream temperature responses of urban and nonurban streams under four climatic conditions and the 2008–2018 period. Metrics included changes in the magnitude and timing of stream temperatures, and the frequency of exceedance of ecologically relevant thresholds. Our results showed that minimum and average daily air temperatures in the region have increased by >1°C over the past 20 years, warming both urban and nonurban streams. Stream temperatures under drought warmed most (1°C–2°C) in late spring and early fall, effectively lengthening the summer warm season. The frequency of occurrence of periods of elevated stream temperatures was greater during warm climate conditions for both urban and nonurban streams, but urban streams experienced extreme conditions 1.5–2 times as often as nonurban streams. Our findings underscore that systematically monitoring and managing urban stream temperatures under climate change and drought is critically needed for seasonal, water‐limited urban systems.  相似文献   

19.
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds.  相似文献   

20.
ABSTRACT: On May 19, 1993, a jury in the U.S. District Court for the Western District of New York found Southview Farm and Richard H. Popp guilty of violating the Clean Water Act on five occasions. The violations were the result of storm water runoff from a site used for disposal of dairy cattle manure from an unpermitted concentrated animal feeding operation. The presiding District Court judge later dismissed the jury verdict, and subsequently a U.S. Court of Appeals for the Second Circuit reversed the dismissal. The Court of Appeals concluded that the discharges were not exempt as agricultural storm water discharges, and that the manure spreaders involved were point sources. Because the use of animal manures in crop production activities will result, unavoidably, in the discharge of some pollutants to adjacent surface waters, a rational and universally applicable basis is needed to determine when such discharges are point versus nonpoint source. Current statutes and regulations do not delineate clearly such a boundary. To address this lack of specificity, I propose that application rates be based on recommended crop nutrient needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号