首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了探究不同含水率煤尘在瓦斯爆炸诱导下的爆炸传播规律,利用自行搭建的直管瓦斯爆炸诱导煤尘二次爆炸实验系统,从冲击波压力和火焰传播速度2个方面,研究了不同含水率沉积煤尘在瓦斯爆炸诱导下的爆炸传播规律和原因。研究结果表明:当煤尘含水率小于40%时,管道内沉积煤尘会在瓦斯爆炸诱导下产生二次爆炸,同时沉积煤尘总量一定时,沉积煤尘二次爆炸产生的冲击波超压峰值和火焰传播速度随着煤尘含水率的增加先增大后减小;当沉积煤尘含水率为20% 时,煤尘二次爆炸产生的冲击波超压峰值、火焰传播速度峰值达到最大值,分别为1.657 MPa和468.060 m/s;当沉积煤尘含水率大于40%时,沉积煤尘无法产生二次爆炸,此时爆炸产生的威力小于单一瓦斯爆炸,火焰传播速度衰减较无煤尘的瓦斯爆炸更快,沉积煤尘起到抑制瓦斯爆炸传播的作用。研究结果可以为防治煤尘二次爆炸提供理论依据。  相似文献   

2.
运用大型试验管道对瓦斯爆炸传播规律进行试验研究,并对瓦斯爆炸压力峰值、火焰速度和呈现时间进行分析,得出:在不出现爆轰的前提下,爆源点附近的压力峰值是全管道的最大值;爆炸压力峰值在沿管道的传播过程中从爆源点附近是先增大后减小,然后再逐渐增大且压力峰值最早呈现在出口附近;火焰传播速度随着传播距离的增大而逐渐增大且在爆炸初期增大速率更快;瓦斯浓度对爆炸压力峰值、火焰传播速度和呈现时间等都有重要影响。  相似文献   

3.
为了进一步探究瓦斯煤尘爆炸火焰的传播规律,在自行设计搭建的半封闭竖直管道内,选用褐煤、烟煤和无烟煤3种煤样分别进行爆炸试验,并通过改变煤尘质量浓度来观察不同煤种条件下瓦斯煤尘爆炸反应强度,研究不同煤种条件下煤尘质量浓度对瓦斯煤尘耦合爆炸火焰传播规律的影响。结果表明,在瓦斯体积分数和煤尘质量浓度相同的条件下,褐煤爆炸产生的火焰传播速度最大,无烟煤最小。这是因为褐煤的挥发分含量较高,而影响爆炸火焰传播速度的主要原因是煤尘在加热情况下释放出的可燃气量,即煤种的挥发分含量,挥发分含量越大,瓦斯煤尘爆炸火焰传播速度也就越大。褐煤和烟煤的火焰传播速度随火焰传播距离增加而增加,直至传播至管道外部;无烟煤的火焰传播速度随火焰传播距离增加呈现先上升后下降的状态。在试验中,3种煤种和瓦斯爆炸时产生火焰最大传播速度的位置距离爆炸源较远。瓦斯煤尘爆炸产生的火焰稳定性较差,在传播过程中速度变化不稳定,存在较大的波动。火焰传播速度与煤尘质量浓度不成正比,在一定范围内,适当增加煤尘质量浓度可以大大提高瓦斯煤尘爆炸的反应强度,且存在一个最佳的煤尘质量浓度50 g/m3,使火焰传播速度达到最大。  相似文献   

4.
为研究瓦斯爆炸冲击波在单向分叉管道内的传播规律,建立瓦斯爆炸试验管道系统,进行瓦斯爆炸试验。根据试验结果,分析单向分岔管道分岔前的超压、分岔角度对管道内冲击波传播的影响。所得研究结论是:管道分叉角度不变时,冲击波超压越大,直线管道超压衰减系数和支线管道超压衰减系数越大。冲击波超压不变时,增大单向分叉管道角度,支线管道冲击波超压衰减系数变大,直线管道衰减冲击波超压系数变小,体现了支线和直线管道内冲击波的分流作用;支线管道的分叉角度越大,对直线管道的分流作用越小。  相似文献   

5.
为了进一步探究瓦斯煤尘耦合爆炸火焰的传播规律,用自行搭建的半封闭垂直管道爆炸试验系统,研究障碍物对瓦斯煤尘耦合爆炸火焰传播规律的影响。研究结果表明:障碍物能显著提高瓦斯煤尘爆炸火焰的传播速度,其加速机理主要是障碍物诱导的湍流区会促进火焰的传播;火焰在传播过程中的加速度不是一直增加,随着火焰速度的增加会出现上下波动;煤尘的加入会使瓦斯爆炸产生的火焰传播速度显著增大及速度的最大值距离点火端较远;通过障碍物时爆炸产生的火焰形状发生较大的改变,出现拉伸和褶皱现象。  相似文献   

6.
为了研究油气浓度对半开口管道爆炸超压特性与火焰行为的影响,建立半开口透明管道实验台架,采用5种不同初始油气浓度,进行了一系列油气爆炸对比实验。研究结果表明:油气浓度对油气爆炸超压峰值以及升压速率有显著影响,二者都呈现随浓度的增加先增大后减小的变化规律;油气浓度对火焰锋面传播速度有着显著影响,在当量浓度比下,火焰锋面的传播速度最大,并且火焰锋面的传播距离也最远;管道内的火焰行为可以分为4个阶段;油气浓度对火焰传播形态以及传播速度有明显的影响,对火焰传播形态的影响主要体现在破坏变形以及管道外爆炸阶段,随着浓度增加,爆炸半径先增大后减小,火焰传播速度呈现相同的变化规律。  相似文献   

7.
为研究连通器瓦斯爆炸的瞬态流场并精确捕捉冲击波,采用基于详细化学反应的建表方法(TDC),在OpenFOAM平台上开发基于HLLC算法的瓦斯爆炸求解器,对1 m3密闭釜-管道系统内的瓦斯(甲烷)-空气预混气体爆炸模拟分析,通过瓦斯爆炸试验对模拟结果进行验证,在此基础上分析连通器瓦斯爆炸火焰及冲击波传播特性。结果表明:瓦斯爆炸火焰经过管道时加速,以射流形式喷入传爆釜,传爆釜冲击波的反射波与射流火焰耦合诱导二次爆炸,冲击波强度二次急剧上升;传爆釜中冲击波强度随管道长度增加而增大,管道长4 m时,火焰传播持续加速,而管道长6和10 m时,火焰传播速度先增高后降低。  相似文献   

8.
为了探究瓦斯煤尘爆炸火焰的传播规律,采用自行搭建的半封闭垂直管道爆炸试验系统,研究瓦斯体积分数和煤尘质量浓度的改变对火焰传播规律的影响。结果表明:1)加入煤尘后的瓦斯爆炸火焰传播速度显著增大;2)在爆炸腔体内,瓦斯体积分数越接近化学当量比,煤尘质量浓度越接近50 g/m3,爆炸火焰传播速度越快;3)在传播管道内,大量的氧气从开口端进入参与反应,瓦斯体积分数和煤尘质量浓度较大的试验组,火焰传播速度会迅速上升; 4)煤尘质量浓度和瓦斯体积分数存在最佳配比,煤尘质量浓度和瓦斯体积分数偏离最佳浓度配比程度较大时,火焰传播加速度下降,传播距离变短。  相似文献   

9.
顾金龙  翟成 《火灾科学》2011,20(1):16-20
针对复杂燃气管网燃气爆炸致灾严重,传播规律复杂的问题,利用实验室加工成的连续拐弯管道,模拟研究了复杂燃气管网爆炸性气体通过连续拐弯管道时的火焰传播速度、爆炸波超压变化情况。研究结果表明,当整个管道内充满瓦斯气体时,通过连续拐弯后,火焰传播速度和爆炸波超压值产生显著变化,在连续拐弯管道拐弯处为一扰动源,诱导附加湍流,气流湍流度增大,管道拐弯增加了燃烧区的湍流度,火焰燃烧产生加速度,加速燃烧产生更大能量以推动加速传播。研究结果对指导现场如何防治复杂燃气管网气体爆炸,减轻爆炸的威力具有重要作用。  相似文献   

10.
为研究爆炸冲击波在不同曲率弯曲巷道内的传播规律,采用数值模拟手段建立了不同曲率弯曲巷道爆炸模型,分析了爆炸冲击波在巷道内的传播特性及其变化规律, 并结合冲击波超压对人体的伤害程度分类,研究了不同曲率弯曲巷道内爆炸破坏效应分区。模拟结果表明,弯曲角度改变了巷道内冲击波超压分布,随着巷道弯曲角度的不断增大,壁面反射对冲击波超压峰值分布起主要作用,随着传播距离的增加,冲击波超压峰值衰减显著,体现了超压峰值变化的距离效应。此外,巷道弯曲角度的增加整体减小了爆炸损伤严重程度。研究结果可实现对不同曲率弯曲巷道内冲击波超压分布的预测,并为巷道内爆炸事故预防及应急救援提供借鉴。  相似文献   

11.
为研究不同封闭情况下T型管道中瓦斯爆炸的传播规律,在90°分岔管道中进行瓦斯爆炸实验,管道封闭情况为弱封闭(双PVC薄膜弱封闭)和强封闭(直管封闭或支管封闭)。实验结果表明:在瓦斯浓度为9.5%时,管道中各点处的瓦斯爆炸压力、火焰传播速度和火焰锋面振荡幅度最大,11%次之,8%最小。T型管道中,弱封闭端瓦斯爆炸压力不断减小;火焰传播速度先缓慢增大后减小,随后又快速增大。强封闭端,瓦斯爆炸压力增大;火焰传播速度先缓慢增大后略微下降,随后快速增大后又大幅度下降,甚至出现火焰锋面振荡现象。不同封闭管道中各测点的瓦斯最大爆炸压力和火焰传播速度大小比较可知,直管封闭管道>双PVC薄膜弱封闭管道>支管封闭管道。  相似文献   

12.
瓦斯爆炸引起沉积煤尘爆炸传播实验研究   总被引:4,自引:1,他引:3  
运用井下大型实验巷道对瓦斯爆炸诱导沉积煤尘爆炸进行实验研究,并对几次实验结果进行对比分析。通过对爆炸压力以及火焰产生、发展、传播过程进行的分析,得出瓦斯爆炸引起沉积煤尘爆炸过程中压力波存在回传现象;在煤尘刚开始参与爆炸处,爆炸超压有一个较长的持续时间;爆炸火焰的传播速度在铺有煤尘段迅速上升,最后有一平缓的上升阶段,过了煤尘段开始下降;火焰区长度约为煤尘区长度的2倍等规律。实验研究发现的规律为有效的预防瓦斯煤尘爆炸事故提供了理论依据。  相似文献   

13.
为研究不同煤尘质量浓度对瓦斯爆炸的影响,采用自主搭建的竖直管道,开展质量浓度为25、50、100、200 g/m3的4种煤尘与体积分数为9%的瓦斯混合爆炸试验,分析爆炸室和传播管道内爆炸压力及火焰传播变化特征。结果表明:增加煤尘质量浓度,混合爆炸压力减小;爆炸室和传播管道内的爆炸特性对煤尘的敏感性不同,爆炸室内爆炸压力对高浓度煤尘较敏感,传播管道内爆炸压力对低浓度煤尘较敏感;煤尘的参与,能促进爆炸室和传播管道内火焰的发展,而煤尘质量浓度的增加主要影响爆炸室后段中的火焰发展,对传播管道内火焰的发展有明显的促进作用,当煤尘质量浓度为50 g/m3传播管道内火焰发展速度最快。  相似文献   

14.
为探究不同类型管道内瓦斯爆炸冲击波传播规律,利用L型、T型和十字型试验管道模拟井下巷道结构,采用瓦斯燃烧爆炸测试系统进行瓦斯爆炸模拟试验,监测管道内不同位置的压力值,研究不同类型管道内瓦斯爆炸冲击波在转弯和分岔结构前后的压力变化规律。试验发现:L型管道转弯处外侧管壁爆炸冲击波压力峰值最高;T型和十字型管道的分岔结构可以降低L型管道转弯处的压力峰值,且T型分岔结构的降低效果更好;L型、T型和十字型管道对冲击波压力的衰减效果依次增强。  相似文献   

15.
巷道中瓦斯爆炸诱导激波传播特性研究   总被引:3,自引:1,他引:2  
利用AutoReaGas软件,数值模拟巷道中瓦斯浓度和火源对瓦斯爆炸传播的影响,其计算结果表明:爆炸静态超压随着传播距离的增加而减小,而爆炸动压随着传播距离的增加而增大;点火位置距离巷道封闭端越近,各测点得到的爆炸静态超压值越大;瓦斯浓度对爆炸峰值超压影响显著,当浓度为9.5%的氧化反应当量比浓度时,得到的最大峰值超压为70.95kPa,爆炸威力最大。  相似文献   

16.
管道内可燃气体火焰传播与障碍物相互作用的过程的研究对爆炸场所预估和防爆工程设计具有重要的意义,在实际生产、生活中,火焰传播方向上的障碍物往往具有立体结构,基本没有平面结构,因此,利用长管密闭容器,在立体障碍物存在的条件下,研究了瓦斯爆炸压力和火焰传播速度。研究结果表明:随着障碍物数量的增加,瓦斯爆炸压力和火焰传播速度随之增大;阻塞率增加,瓦斯爆炸压力和火焰传播速度出现先增大后减小的现象,当阻塞率为50%时,其爆炸压力和火焰传播速度达到最大;障碍物的摆放形式对瓦斯爆炸压力和火焰传播速度也有一定的影响。  相似文献   

17.
为研究高海拔矿井瓦斯爆炸火焰传播规律,运用数值模拟方法,建立矿井掘进巷道瓦斯气体爆炸数学及物理模型,并对海拔高度为0,1 000,2 000,3 000,4 000 m时的爆炸火焰传播速度、温度和冲击波压力进行研究。结果表明:瓦斯浓度和聚集体积量一定的掘进巷道发生瓦斯爆炸时,随着海拔高度的升高,火焰传播速度增大,且海拔每升高1 000 m,瓦斯气体聚集区和非聚集区的平均火焰传播速度分别增大4.7%和1.9%,掘进巷道内同一位置受到的瓦斯爆炸火焰最高冲击波压力随着海拔高度增加而显著降低,且呈二次函数关系,达到最大冲击波压力和最高火焰温度的时间缩短,最高爆炸火焰温度受海拔高度的影响较小。  相似文献   

18.
为了研究水平管道内障碍物数量对瓦斯爆炸的影响,利用自制的水平管道式气体爆炸试验装置,选用阻塞率为60%的圆环型障碍物,在常温常压下对管道内障碍物数量分别为1片、3片、5片和7片时瓦斯(试验气体为甲烷与空气的混合物,下同)爆炸过程进行试验研究。结果表明:瓦斯的爆炸压力及其上升速率均随障碍物数量的增加呈先增后减的变化规律,而火焰传播速度则随着障碍物数量的增加单调递增,但递增幅度逐渐减小。在密闭置障管道内瓦斯的爆炸压力及其上升速率随测试位置长径比的增大先减小后增大,而火焰传播速度则随测试位置长径比的增大单调递减。  相似文献   

19.
瓦斯爆炸冲击波在传播过程中的传播特性不仅与瓦斯体积分数、温度等条件有关,还与网络结构有关.为探究冲击波超压在对称角联网络结构内的变化特征、角联分支对主巷道内冲击波传播的影响等问题,结合实际巷道尺寸,对对称角、并联网络巷道进行了瓦斯爆炸过程的数值模拟.结果表明:受角联分支影响,分支后的巷道内冲击波衰减幅度大于并联网络中对应各点,且与角联分支距离越近,影响越大;角联分支对角联分叉前、后巷道内冲击波二次超压产生一定影响;与并联网络相比,角联网络中冲击波到达角联分叉后的超压峰值出现时间更晚;角联网络中角联分叉后各点冲击波超压峰值均低于并联网络中对应各点.  相似文献   

20.
为研究不同长度分支管道对油气爆炸强度的影响,搭建不同分支管道试验系统。分别在直管道中和带有分支管道的直管道中进行油气体积分数为1.75%的爆炸试验,并分析爆炸超压值、升压速率、火焰传播速度以及火焰强度等特性参数变化情况。试验结果表明,分支管道对直管内的爆炸超压、升压速率、火焰传播速度、火焰强度和火焰持续时间有强化作用,并且分支管道越长,强化作用越显著,但是较短的分支管道由于面积突扩导致的泄压效应和管壁耗散效应占主导地位,使得分支管道后火焰传播速度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号