首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了进一步探究瓦斯煤尘爆炸火焰的传播规律,在自行设计搭建的半封闭竖直管道内,选用褐煤、烟煤和无烟煤3种煤样分别进行爆炸试验,并通过改变煤尘质量浓度来观察不同煤种条件下瓦斯煤尘爆炸反应强度,研究不同煤种条件下煤尘质量浓度对瓦斯煤尘耦合爆炸火焰传播规律的影响。结果表明,在瓦斯体积分数和煤尘质量浓度相同的条件下,褐煤爆炸产生的火焰传播速度最大,无烟煤最小。这是因为褐煤的挥发分含量较高,而影响爆炸火焰传播速度的主要原因是煤尘在加热情况下释放出的可燃气量,即煤种的挥发分含量,挥发分含量越大,瓦斯煤尘爆炸火焰传播速度也就越大。褐煤和烟煤的火焰传播速度随火焰传播距离增加而增加,直至传播至管道外部;无烟煤的火焰传播速度随火焰传播距离增加呈现先上升后下降的状态。在试验中,3种煤种和瓦斯爆炸时产生火焰最大传播速度的位置距离爆炸源较远。瓦斯煤尘爆炸产生的火焰稳定性较差,在传播过程中速度变化不稳定,存在较大的波动。火焰传播速度与煤尘质量浓度不成正比,在一定范围内,适当增加煤尘质量浓度可以大大提高瓦斯煤尘爆炸的反应强度,且存在一个最佳的煤尘质量浓度50 g/m3,使火焰传播速度达到最大。  相似文献   

2.
为了探究瓦斯煤尘爆炸火焰的传播规律,采用自行搭建的半封闭垂直管道爆炸试验系统,研究瓦斯体积分数和煤尘质量浓度的改变对火焰传播规律的影响。结果表明:1)加入煤尘后的瓦斯爆炸火焰传播速度显著增大;2)在爆炸腔体内,瓦斯体积分数越接近化学当量比,煤尘质量浓度越接近50 g/m3,爆炸火焰传播速度越快;3)在传播管道内,大量的氧气从开口端进入参与反应,瓦斯体积分数和煤尘质量浓度较大的试验组,火焰传播速度会迅速上升; 4)煤尘质量浓度和瓦斯体积分数存在最佳配比,煤尘质量浓度和瓦斯体积分数偏离最佳浓度配比程度较大时,火焰传播加速度下降,传播距离变短。  相似文献   

3.
采用瞬态火焰传播实验系统,对7%,8%,9%,10%和11%的瓦斯体积浓度分别与不同浓度的长焰煤煤尘混合,并使用直径25 μm的Pt/Rh13-Pt微细热电偶测量温度,揭示受限空间内瓦斯与煤尘混合爆炸温度特性。结果表明:煤尘浓度一定时,随着瓦斯浓度的增加,爆炸温度先增加后减小;纯瓦斯浓度在10%时爆炸温度最高,加入煤尘后的混合体系中,瓦斯浓度为9%时爆炸温度最高;瓦斯浓度不变时,随着煤尘浓度的增加,爆炸温度一直减小;7%~11%瓦斯分别与130 g/m3煤尘混合爆炸后测得最高温度分别为1 333.6,1 475.4,1 511.4,1 455.6,1 396.4 ℃;与9%纯瓦斯爆炸相比,9%瓦斯与130,260,520,780 g/m3煤尘混合爆炸后测得最高温度分别降低7.2%,11.5%,15.0%和22.9%。结论得到的瓦斯煤尘共混爆炸温度数据可为煤矿灾害高温防护提供参考依据。  相似文献   

4.
为了探究不同含水率煤尘在瓦斯爆炸诱导下的爆炸传播规律,利用自行搭建的直管瓦斯爆炸诱导煤尘二次爆炸实验系统,从冲击波压力和火焰传播速度2个方面,研究了不同含水率沉积煤尘在瓦斯爆炸诱导下的爆炸传播规律和原因。研究结果表明:当煤尘含水率小于40%时,管道内沉积煤尘会在瓦斯爆炸诱导下产生二次爆炸,同时沉积煤尘总量一定时,沉积煤尘二次爆炸产生的冲击波超压峰值和火焰传播速度随着煤尘含水率的增加先增大后减小;当沉积煤尘含水率为20% 时,煤尘二次爆炸产生的冲击波超压峰值、火焰传播速度峰值达到最大值,分别为1.657 MPa和468.060 m/s;当沉积煤尘含水率大于40%时,沉积煤尘无法产生二次爆炸,此时爆炸产生的威力小于单一瓦斯爆炸,火焰传播速度衰减较无煤尘的瓦斯爆炸更快,沉积煤尘起到抑制瓦斯爆炸传播的作用。研究结果可以为防治煤尘二次爆炸提供理论依据。  相似文献   

5.
为探究煤尘质量浓度对甲烷煤尘耦合爆炸传播特性及伤害距离的影响,自制长15 m的爆炸管道系统,用体积分数为7%甲烷分别与质量浓度为0、50、100和200 g/m3的煤尘进行耦合爆炸试验,并根据质量、动量和能量守恒理论推导出最大压力计算公式.结果 表明:不同质量浓度煤尘与甲烷耦合爆炸时,最大压力均随与爆源距离的增加呈现出...  相似文献   

6.
为研究瓦斯爆炸诱导煤尘爆炸在不同拐弯巷道内的传播特征,首先采用不同角度拐弯管道模拟煤矿井下拐弯巷道结构;然后利用煤尘爆炸试验系统,通过试验监测管道内不同位置的冲击波压力值和火焰传播速度值;最后研究不同拐弯角度管道内瓦斯爆炸诱导煤尘爆炸冲击波和火焰在拐弯前后的变化特征。结果表明:瓦斯填充长度一定的情况下,沉积煤尘爆炸冲击波峰值超压先减小后增大,到达管道拐弯后,急剧减小;冲击波峰值超压衰减率随着管道拐弯角度的增大而增大,角度越大,峰值超压衰减越快;火焰传播速度先增大后减小,经过拐弯管道后,速度突然增加;火焰传播速度变化率随拐弯角度的增大而增大,角度越大,速度增幅越大。  相似文献   

7.
瓦斯煤尘爆炸特性及传播规律研究进展   总被引:5,自引:3,他引:2  
概要介绍国内外的瓦斯爆炸和瓦斯煤尘混合物爆炸特性及传播规律研究进展,瓦斯爆炸研究主要集中在瓦斯爆炸压力、火焰、温度等特征参数、不同障碍物对瓦斯爆炸压力、火焰传播的影响以及分岔、拐弯等不同形状管道内的传播规律,而瓦斯煤尘混合物爆炸研究主要集中在瓦斯对煤尘爆炸的最小点火能、爆炸下限、最大爆炸压力等爆炸特性及传播规律的影响。对不同研究人员采用的主要研究指标、手段、方法和研究结论进行综合评述,同时也对爆炸事故人员伤害模型在国内外的研究状况进行讨论,最后指出目前存在的主要问题和下一步的研究方向。  相似文献   

8.
为提供煤尘爆炸事故预防和缓解所需的科学依据,对煤尘爆炸火焰传播过程进行试验研究。所用试验装置,其主要部分为直径0.3 m的圆形管道与断面边长为80 mm的方形管道对接形成的一个长2 m的爆炸腔体。在其中共进行9次煤尘爆炸试验。结果表明,煤尘爆炸火焰传播具有速度快,波动大,稳定性较差的特点,火焰区长度远大于扬尘区长度,最大火焰速度和传播距离与煤尘量均不存在正比例关系,但存在一个特定的煤尘质量浓度。在这个特定质量浓度处,最大火焰速度达到最大值。当煤尘质量浓度大于这个特定质量浓度时,火焰传播速度曲线整体下降,暂时缺氧被认为是导致这一情况的重要因素。  相似文献   

9.
为了进一步探究瓦斯煤尘耦合爆炸火焰的传播规律,用自行搭建的半封闭垂直管道爆炸试验系统,研究障碍物对瓦斯煤尘耦合爆炸火焰传播规律的影响。研究结果表明:障碍物能显著提高瓦斯煤尘爆炸火焰的传播速度,其加速机理主要是障碍物诱导的湍流区会促进火焰的传播;火焰在传播过程中的加速度不是一直增加,随着火焰速度的增加会出现上下波动;煤尘的加入会使瓦斯爆炸产生的火焰传播速度显著增大及速度的最大值距离点火端较远;通过障碍物时爆炸产生的火焰形状发生较大的改变,出现拉伸和褶皱现象。  相似文献   

10.
田诗雅    刘剑    高科   《中国安全生产科学技术》2015,11(8):16-21
针对矿井瓦斯爆炸破坏模式主要在压力破坏和冲量破坏的研究,实验分析瓦斯在密闭管道发生爆炸时瓦斯浓度对冲击波冲量及压力上升速率的影响,利用管道中距离点火源不同位置的压力传感器测试了不同浓度瓦斯的爆炸压力,对冲击波冲量及压力上升速率进行分析,为防爆抑爆提供依据。研究结果显示:在管道中距离点火源的不同位置上,当浓度为9.5%时,瓦斯爆炸冲击波冲量及压力上升速率最大;由于超压衰减和传播距离的增加,在距离点火源4m和8m时压力冲量较大;在瓦斯浓度较低的范围内瓦斯爆炸时,其压力上升速率增长较快,而随着浓度的增加在较宽的浓度范围内,能较稳定地维持在高位值。  相似文献   

11.
赵飞  曹雄 《安全》2015,(4):28-30
为研究煤矿甲烷-煤尘混合爆炸的规律,采用水平管道式气体粉尘爆炸装置。试验时,通过延迟爆破系统,将储罐内的煤尘吹入管道内与甲烷气体混合,点火后甲烷爆炸产生的能量作为初始能量引起煤尘的爆炸。通过改变甲烷浓度、煤尘浓度,对甲烷-煤尘混合爆炸的最大爆炸压力和压力上升速率进行了研究。结果表明:最大爆炸压力和压力上升速率随甲烷浓度的增加先增加后减小,随煤尘浓度的增加也先增大后减小。  相似文献   

12.
煤粉爆炸传播特性的试验研究对于深入了解和预防矿井煤尘爆炸事故有重要意义。利用自制的长29.6 m,内径199 mm的试验管道,对煤粉-空气混合物爆炸压力波传播过程进行试验研究。采用压电传感器测量压力信号,得到爆炸压力波沿管道传播过程中不同测点处的压力时间历程曲线,探讨煤粉粒度和浓度对其爆炸超压的影响规律。结果表明:煤粉-空气混和物在弱点火条件下能够实现粉尘火焰的形成和传播。煤粉爆炸压力波传播过程中速度为400~430 m/s,峰值超压为68~72 kPa。煤粉爆炸峰值超压随着煤粉粒度的减小而增大,但煤粉粒度对其爆炸峰值超压的影响程度随着浓度的增加将逐渐减弱。  相似文献   

13.
为研究制药工业粉尘爆炸事故机制,以典型药物替米考星为对象,分析药物粉尘爆炸和火焰传播特性。主要采用20 L球形爆炸装置、最小点火能(MIE)装置和颗粒图像测速仪(PIV)等设备,试验测试替米考星粉尘的爆炸下限、最大爆炸压力、爆炸指数、MIE和火焰传播速度等指标。结果表明,平均粒径为50μm的替米考星球形颗粒粉尘,其爆炸下限质量浓度为20~30 g/m3,最大爆炸压力为0.89 MPa,最大爆炸指数为25.80 MPa·m/s,MIE为13.20 m J;当粉尘质量浓度为416.67 g/m3时,喷粉初始压力为0.5 MPa,喷粉点火87.5 ms后,竖直管道中火焰传播速度达到最大值34 m/s。  相似文献   

14.
管道内可燃气体火焰传播与障碍物相互作用的过程的研究对爆炸场所预估和防爆工程设计具有重要的意义,在实际生产、生活中,火焰传播方向上的障碍物往往具有立体结构,基本没有平面结构,因此,利用长管密闭容器,在立体障碍物存在的条件下,研究了瓦斯爆炸压力和火焰传播速度。研究结果表明:随着障碍物数量的增加,瓦斯爆炸压力和火焰传播速度随之增大;阻塞率增加,瓦斯爆炸压力和火焰传播速度出现先增大后减小的现象,当阻塞率为50%时,其爆炸压力和火焰传播速度达到最大;障碍物的摆放形式对瓦斯爆炸压力和火焰传播速度也有一定的影响。  相似文献   

15.
聂百胜  王晓彤  宫婕  尹斐斐  彭超 《安全》2021,42(1):前插1,1-15
为探究瓦斯煤尘爆炸特性及抑爆机理,本文通过一系列实验,研究瓦斯、煤尘爆炸的速度和温度等特征,提出利用图像相关系数法和辐射测温原理计算火焰传播速度及温度场变化,定量分析影响煤尘爆炸的因素以及产物变化规律,揭示煤尘爆炸的宏微观机制。结果表明:火焰分形维数可以用来反应瓦斯爆炸强度,即当分形维数更接近2.2937时爆炸反应最为强烈,其爆炸过程中自由基最终生成浓度与CH 4初始浓度呈倒U型关系;当量比对煤粉火焰爆炸压力及速度也有一定影响,在最佳当量比的2倍左右时可以达到最大爆炸压力和最大火焰传播速度。另外本文亦采用泡沫陶瓷对瓦斯的多次爆炸和连续爆炸进行抑爆,发现不同厚度和孔隙的泡沫陶瓷具有不同的抑制效果,孔隙较大的泡沫陶瓷对爆炸能量有较好的抑制作用。  相似文献   

16.
为了探索瓦斯煤尘爆炸的防治技术措施,在大尺度断面巷道开展粉体云幕的隔爆性能测试。运用直径2 m大尺度管道及其附属敞开空间,研究粉体云幕的形成过程及其动态分布特征;在此基础上,以爆炸压力、火焰速度为特征参数,在断面7. 2 m~2大型地下巷道内进行瓦斯煤尘爆炸及隔爆试验。研究结果表明:隔爆粉体在60 ms时可覆盖7. 4 m~2断面,在1 200 ms绝大部分粉体喷出,形成有效隔爆屏障;在试验条件下,粉体云幕面密度8. 1 kg/m~2时,爆炸火焰在13 m范围内被完全熄灭,最大爆炸压力由云幕前的0. 293 MPa降低至0. 126 MPa,下降了57. 0%,140 m位置的爆炸压力上升时间延迟了137 ms;随粉体云浓度的增加,隔爆效果增强,粉体云幕能在短距离范围内扑灭爆炸火焰,并大幅衰减爆炸冲击波压力。  相似文献   

17.
瓦斯爆炸引起沉积煤尘爆炸传播实验研究   总被引:4,自引:1,他引:3  
运用井下大型实验巷道对瓦斯爆炸诱导沉积煤尘爆炸进行实验研究,并对几次实验结果进行对比分析。通过对爆炸压力以及火焰产生、发展、传播过程进行的分析,得出瓦斯爆炸引起沉积煤尘爆炸过程中压力波存在回传现象;在煤尘刚开始参与爆炸处,爆炸超压有一个较长的持续时间;爆炸火焰的传播速度在铺有煤尘段迅速上升,最后有一平缓的上升阶段,过了煤尘段开始下降;火焰区长度约为煤尘区长度的2倍等规律。实验研究发现的规律为有效的预防瓦斯煤尘爆炸事故提供了理论依据。  相似文献   

18.
为研究连通器瓦斯爆炸的瞬态流场并精确捕捉冲击波,采用基于详细化学反应的建表方法(TDC),在OpenFOAM平台上开发基于HLLC算法的瓦斯爆炸求解器,对1 m3密闭釜-管道系统内的瓦斯(甲烷)-空气预混气体爆炸模拟分析,通过瓦斯爆炸试验对模拟结果进行验证,在此基础上分析连通器瓦斯爆炸火焰及冲击波传播特性。结果表明:瓦斯爆炸火焰经过管道时加速,以射流形式喷入传爆釜,传爆釜冲击波的反射波与射流火焰耦合诱导二次爆炸,冲击波强度二次急剧上升;传爆釜中冲击波强度随管道长度增加而增大,管道长4 m时,火焰传播持续加速,而管道长6和10 m时,火焰传播速度先增高后降低。  相似文献   

19.
条形障碍物对瓦斯爆炸特性影响研究   总被引:3,自引:1,他引:2  
我国煤矿瓦斯爆炸事故不断出现,造成了巨大的人员伤亡和经济损失,在置障条件下研究瓦斯爆炸特性,对预防和减少瓦斯爆炸事故具有重要意义。利用水平管道式爆炸试验装置,研究密闭管道内条形障碍物的数量和阻塞率对管道内瓦斯最大爆炸压力、火焰速度、最大爆炸压力上升速率和爆炸指数的影响以及敞口状态的影响。研究表明:障碍物对瓦斯爆炸具有显著激励作用,管道内瓦斯最大爆炸压力、火焰速度、最大爆炸压力上升速率和爆炸指数均显著增大,随着障碍物数量和阻塞率的增加,激励作用越明显;敞口状态下管道内最大爆炸压力、最大爆炸压力上升速率和爆炸指数均显著减小,火焰持续传播。研究结果对防治煤矿瓦斯爆炸事故提供一定的理论支持。  相似文献   

20.
为了解CO2-超细水雾对瓦斯/煤尘爆炸抑制特性,用自行搭建的实验系统,从超压、火焰传播速度和火焰结构3个方面研究了CO2-超细水雾形成的气液两相介质对9.5%瓦斯/煤尘复合体系爆炸的抑爆效果、影响因素与原因。研究结果表明:随着CO2体积分数和超细水雾质量浓度的增加,爆炸火焰最大传播速度、爆炸超压峰值均出现明显下降,火焰到达泄爆口时间显著延迟;尤其当CO2体积分数达到14%与超细水雾的共同抑爆效果凸显,瓦斯/煤尘复合体系爆炸超压的“震荡平台”消失,同时火焰结构呈现“整体孔隙化”。所得结论为煤矿井下高效防爆抑爆技术进行了完善和增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号