首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Gibbsite calcined at 400°C (GB400) was prepared, and its ability to adsorb rhodium(III) was investigated. Optimal pH, effect of contact time, temperature, adsorption isotherms, and recovery percentage were evaluated. The optimal pH was 6.3. The adsorption equilibrium was achieved within 24 h. The adsorption rate was found to be of pseudo-first order. The experimental data were fitted to both the Freundlich (r = 0.90–0.93) and Langmuir (r = 0.94–0.96) equations. The amount of rhodium(III) adsorbed decreased with increasing temperature. Rhodium(III) being adsorbed from phosphate or sulfate plating solution was recovered using hydrochloric acid and sodium hydroxide solutions at 1, 10, and 100 mmol L?1.  相似文献   

2.
• Synthesized few-layered MoS2 nanosheets via surfactant-assisted hydrothermal method. • Synthesized MoS2 nanosheets show petal-like morphology. • Adsorbent showed 93% of mercury removal efficiency. • The adsorption of mercury is attributed to negative zeta potential (-21.8 mV). Recently, different nanomaterial-based adsorbents have received greater attention for the removal of environmental pollutants, specifically heavy metals from aqueous media. In this work, we synthesized few-layered MoS2 nanosheets via a surfactant-assisted hydrothermal method and utilized them as an efficient adsorbent for the removal of mercury from aqueous media. The synthesized MoS2 nanosheets showed petal-like morphology as confirmed by scanning electron microscope and high-resolution transmission electron microscopic analysis. The average thickness of the nanosheets is found to be about 57 nm. Possessing high stability and negative zeta potential makes this material suitable for efficient adsorption of mercury from aqueous media. The adsorption efficiency of the adsorbent was investigated as a function of pH, contact time and adsorbent dose. The kinetics of adsorption and reusability potential of the adsorbent were also performed. A pseudo-second-order kinetics for mercury adsorption was observed. As prepared MoS2 nanosheets showed 93% mercury removal efficiency, whereas regenerated adsorbent showed 91% and 79% removal efficiency in the respective 2nd and 3rd cycles. The adsorption capacity of the adsorbent was found to be 289 mg/g at room temperature.  相似文献   

3.
The effectiveness of gibbsite (GB), an amorphous aluminum oxide, for the recovery of Mo(VI) from eluates of fly ash of two coal-fired thermal power stations and of roof tile waste was investigated. Upon the qualitative analysis of an eluate of fly ash, 16 elements were detected. Greater amounts of these elements were eluted under acidic conditions (pH 2) than from the neutral or basic eluate of fly ash. GB was used for the adsorption of Mo(VI). Equilibrium adsorption was reached within 1?min. Optimal solution acidity for the adsorption of Mo(VI) onto GB400 (calcined at 400°C) was pH 2. The main adsorption mechanism was ion exchange with a number of hydroxyl groups of GB400. For repeated ad- and desorption of Mo(VI), GB400 could be used at least four times and the recovery percentage of Mo(VI) with sodium hydroxide solution as eluent surpassed 90%. Our results showed that GB400 was very effective for the recovery of Mo(VI) from fly ash.  相似文献   

4.
This study focused on the adsorptive behaviors of humic acid onto freshly prepared hydrous MnO2(s) (δMnO2), and investigated the feasibility of employing δMnO2 for humic acid removal from drinking water. Effects of such parameters as molecular mass of humic acid, kinds of divalent cations on adsorptive behaviors and possible mechanisms involved were investigated. This study indicated that humic acid with higher molecular mass exhibited more tendency of adsorbing onto δMnO2 than that with lower molecular mass. Ca2+ facilitated more humic acid adsorption than Mg2+; UV-Vis spectra analysis indicated higher capabilities of Ca2+ coordinating with acidic functional groups of humic acid than that of Mg2+. Additionally, ζ potential characterization indicated that Ca2+ showed higher potential of increasing gz potential of δMnO2 than Mg2+. Ca2+ of 1.0 mmol/L increased ζ potential of δMnO2 from ?37 mV (pH 7.9) to +7 mV (pH 7.2), while 1.0 mmol/L Mg2+ increased to lower value as ?9 mV (pH 6.5), correspondingly. Fourier transform infrared (FTIR) spectra demonstrated the adsorption of humic acid onto δMnO2, showing the important roles of-COO? functional groups and surface Mn-OH in the adsorption of humic acid onto δMnO2.  相似文献   

5.
Hazardous wastes are generated in the synthesis of dyes and pigments applied in industries. Efficient methods are thus needed to clean wastewaters. Here, we use anodic oxidation and electro-Fenton with B-doped diamond anode to degrade the synthetic dye indigo in aqueous sodium dithionite. Results show the near-complete mineralization of the dye within 80 min at 500 mA. Mineralization was faster by electro-Fenton than anodic oxidation. The second-order rate constant (k) for the reaction of indigo with ·OH was measured as 4.03 × 109 M?1 s?1 at pH 3.0 and was compared with the rate constants of reactions between dyes and ·OH. The results clearly demonstrate that both electro-Fenton and anodic oxidation can be used to depollute dyes in textile effluent with high efficiency and low cost. The main oxidant, ·OH, being a non-selective reagent, the method could be applied to degrade other organic pollutants.  相似文献   

6.
● Organic matter content significantly affected adsorption of E2/EE2 on saline soil. ● EE2 possessed higher competition intensity for adsorption sites than E2. ● The adsorption of E2/EE2 on saline soil was a spontaneous exothermic process. ● Desorption capacity of EE2/E2 accounted for 40%/78% of the total adsorption capacity. Soil organic matter content was the main driving factor affecting adsorption and desorption process of 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) on saline soil. The adsorption and desorption of E2 and EE2 on three saline soils showed the similar behavior that soil with the highest organic content possessed the highest adsorption capacity and the lowest desorption capacity for E2 and EE2. The adsorption capacity of untreated soil samples (with organic matter) was larger than that of soil samples without organic matter. For soil with the largest adsorption capacity, adsorption capacity of E2/EE2 on the untreated soil and soil colloid (with organic matter) respectively reached 0.15/0.30 μg/g and 0.16/0.33 μg/g while the soil and soil colloid without organic matter hardly adsorbed pollutants. The adsorption capacity of E2/EE2 at the initial concentration of 100 μg/L was 25/15 times higher than that at the initial concentration of 5 μg/L. E2 and EE2 had the same adsorption sites on saline soil while EE2 possessed higher competition intensity for adsorption sites than E2. Pseudo-first-order model (R2 = 0.995–0.986) and Langmuir model (R2 = 0.989–0.999) could better fit the adsorption process of E2 or EE2. The thermodynamic study further showed that the adsorption of E2/EE2 on saline soil was a spontaneous exothermic process. The desorption capacity of EE2/E2 accounted for 40%/78% of the total adsorption capacity to possibly exert potential risk to the groundwater. The variation of the salinity led to the variation of soil organic carbon which subsequently changed the adsorption and desorption behaviors of endocrine disrupting chemicals in coastal saline soil. This study provides a new insight on the interfacial behavior of endocrine disrupting chemicals on saline soil.  相似文献   

7.
Cadmium (Cd) is a carcinogenic metal contaminating the environment and ending up in wastewaters. There is therefore a need for improved methods to remove Cd by adsorption. Biogenic elemental selenium nanoparticles have been shown to adsorb Zn, Cu and Hg, but these nanoparticles have not been tested for Cd removal. Here we studied the time-dependency and adsorption isotherm of Cd onto biogenic elemental selenium nanoparticles using batch adsorption experiments. We measured ζ-potential values to assess the stability of nanoparticles loaded with Cd. Results show that the maximum Cd adsorption capacity amounts to 176.8 mg of Cd adsorbed per g of biogenic elemental selenium nanoparticles. The ζ-potential of Cd-loaded nanoparticles became less negative from ?32.7 to ?11.7 mV when exposing nanoparticles to an initial Cd concentration of 92.7 mg L?1. This is the first study that demonstrates the high Cd uptake capacity of biogenic elemental selenium nanoparticles, of 176.8 mg g?1, when compared to that of traditional adsorbents such as carboxyl-functionalized activated carbon, of 13.5 mg g?1. An additional benefit is the easy solid–liquid separation by gravity settling due to coagulation of Cd-loaded biogenic elemental selenium nanoparticles.  相似文献   

8.
Experiments have been carried out to study the sorption of Benzo(a)pyrene(Bap) on sediment particles from the Yellow River using a batch equilibration technique. Effects of particle size on the adsorption and partition of Bap were investigated with the particle content of 3 g/L. Several significant results were obtained from the study. (1) Isotherms of Bap could be fitted with the dual adsorption-partition model under different particle sizes, and the measured value of the adsorption and partition was in agreement with the theoretical value of the dual adsorption-partition model. (2) When the particle diameter was d ? 0.025 mm, the adsorption was predominant in the sorption of Bap, which accounted for 68.7%–82.4% of the sorption. For the particles with the size of 0.007 mm?d<0.025 mm, the adsorption was predominant when the equilibrium concentration of Bap was 0–8.87 μg/L in the water phase; and the partition was predominant when the equilibrium concentration of Bap was higher than 8.87 μg/L in the water phase. When the particle diameter was d<0.007 mm, the partition was predominant. (3) On the point of particle size, the contribution of adsorption to sorption followed the order: “d?0.025 mm”>“0.007 mm ?d<0.025 mm” >“d<0.007 mm”. (4) The partition coefficients of Bap in solids with different particle sizes were linearly correlated with the organic content, and the K oc of Bap was about 1.26 × 105 (L/kg).  相似文献   

9.
A novel hyper-crosslinked resin (MENQ) modified with an anion exchange group was prepared using divinylbenzene (DVB) and methyl acrylate (MA) as comonomers via four steps: suspension polymerization, post-crosslinking, ammonolysis and alkylation reactions. The obtained resin had both a high specific surface area (793.34 m2·g-1) and a large exchange capacity (strong base anion exchange capacity, SEC: 0.74 mmol·g-1, weak base anion exchange capacity, WEC: 0.45 mmol·g-1). XAD-4 was selected as an adsorbent for comparison to investigate the adsorption behavior of tetracycline (TC) and humic acid (HA) onto the adsorbents. The results revealed that MENQ could effectively remove both TC and HA. The adsorption capacity of XAD-4 for TC was similar to that of MENQ, but XAD-4 exhibited poor performance for the adsorption of HA. The adsorption isotherms of TC and HA were well-fitted with the Freundlich model, which indicated the existence of heterogeneous adsorption through cation-π bonding and π–π interactions. The optimal solution condition for the adsorption of TC was at a pH of 5–6, whereas the adsorption of HA was enhanced with increasing pH of the solution.  相似文献   

10.
● A composite aerogel was simply obtained to remove various fluoroquinolones (FQs). ● The structural and textural properties of this composite aerogel are improved. ● Its adsorption capacity was improved at a low content of coexisting Cu2+ or Fe3+ ion. ● Two substructural analogs of FQs are compared to explore the adsorption mechanisms. ● This aerogel after saturated adsorption can be reused directly for Cu2+ adsorption. 3D composite aerogels (CMC-CG) composed of carboxymethyl cellulose and κ-carrageenan were designed and fabricated using the one-pot synthesis technique. The optimized CMC-CG showed a good mechanical property and a high swelling ratio due to its superior textural properties with a proper chemically cross-linked interpenetrating network structure. CMC-CG was utilized for the removal of various fluoroquinolones (FQs) from water and exhibited high adsorption performance because of effective electrostatic attraction and hydrogen bonding interactions. Ciprofloxacin (CIP), a popular FQ, was used as the representative. The optimized CMC-CG had a theoretically maximal CIP uptake of approximately 1.271 mmol/g at the pH of 5.0. The adsorption capacity of CMC-CG was improved in the presence of some cations, Cu2+ and Fe3+ ions, at a low concentration through the bridging effect but was reduced at a high concentration. The investigation of adsorption mechanisms, based on the adsorption kinetics, isotherms and thermodynamic study, Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy analyses before and after adsorption, and changes in the adsorption performance of CMC-CG toward two molecular probes, further indicated that electrostatic attraction was the dominant interaction rather than hydrogen bonding in this adsorption. CMC-CG after saturated adsorption of CIP could be easily regenerated using a dilute NaCl aqueous solution and reused efficiently. Moreover, the disused aerogel could still be reused as a new adsorbent for effective adsorption of Cu2+ ion. Overall, this study suggested the promising applications of this composite aerogel as an eco-friendly, cost-effective, and recyclable adsorbent for the efficient removal of FQs from water.  相似文献   

11.
• Orange tree residuals biochar had a better ability to adsorb ammonia. • Modified tea tree residuals biochar had a stronger ability to remove phosphorus. • Partially-modified biochar could remove ammonia and phosphorus at the same time. • The real runoff experiment showed an ammonia nitrogen removal rate of about 80%. • The removal rate of total phosphorus in real runoff experiment was about 95%. Adsorption of biochars (BC) produced from cash crop residuals is an economical and practical technology for removing nutrients from agricultural runoff. In this study, BC made of orange tree trunks and tea tree twigs from the Laoguanhe Basin were produced and modified by aluminum chloride (Al-modified) and ferric sulfate solutions (Fe-modified) under various pyrolysis temperatures (200°C–600°C) and residence times (2–5 h). All produced and modified BC were further analyzed for their abilities to adsorb ammonia and phosphorus with initial concentrations of 10–40 mg/L and 4–12 mg/L, respectively. Fe-modified Tea Tree BC 2h/400°C showed the highest phosphorus adsorption capacity of 0.56 mg/g. Al-modified Orange Tree BC 3h/500°C showed the best performance for ammonia removal with an adsorption capacity of 1.72 mg/g. FTIR characterization showed that P = O bonds were formed after the adsorption of phosphorus by modified BC, N-H bonds were formed after ammonia adsorption. XPS analysis revealed that the key process of ammonia adsorption was the ion exchange between K+ and NH4+. Phosphorus adsorption was related to oxidation and interaction between PO43– and Fe3+. According to XRD results, ammonia was found in the form of potassium amide, while phosphorus was found in the form of iron hydrogen phosphates. The sorption isotherms showed that the Freundlich equation fits better for phosphorus adsorption, while the Langmuir equation fits better for ammonia adsorption. The simulated runoff infiltration experiment showed that 97.3% of ammonia was removed by Al-modified Orange tree BC 3h/500°C, and 92.9% of phosphorus was removed by Fe-modified Tea tree BC 2h/400°C.  相似文献   

12.
The adsorption potential of FMBO, FeOOH, MnO2 for the removal of Cd2+, Cu2+ and Pb2+ in aqueous systems was investigated in this study. Comparing to FMBO and FeOOH, MnO2 offered a much higher removal capacity towards the three metal ions. The maximal adsorption capacity of MnO2 for Cd2+, Cu2+ and Pb2+ were 1.23, 2.25 and 2.60 mmol·g-1, respectively. And that for FMBO were 0.37, 1.13, and 1.18 mmol·g-1 and for FeOOH were 0.11, 0.86 and 0.48 mmol·g-1, respectively. The adsorption behaviors of the three metal ions on the three adsorbents were all significantly affected by pH values and heavy metal removal efficiency increased with pH increased. The Langmuir and Freundlich adsorption models were used to describe the adsorption equilibrium of the three metal ions onto the three adsorbents. Results showed that the adsorption equilibrium data fitted well to Langmuir isotherm and this indicated that adsorption of metal ions occurred on the three metal oxides adsorbents limited to the formation of a monolayer. More negative charged of MnO2 surface than that of FMBO and FeOOH could be ascribed by lower pHiep of MnO2 than that of FMBO and FeOOH and this could contribute to more binding sites on MnO2 surface than that of FMBO and FeOOH. The higher metal ions uptake by MnO2 than FMBO and FeOOH could be well explained by the surface charge mechanism.  相似文献   

13.
An electrochemical-activated denitrifying biofilm system consisting of activated carbon fiber electrodes immobilized with denitrifying bacteria film as cathode was studied. A revised model for an electrochemical-activated denitrifying biofilm was developed and validated by electrochemical analysis of cathodal polarization curves and nitrate consumption rate. The cathodal polarization curve and nitrate consumption rate were introduced to verify the rate of electrochemical reaction and the activity of denitrifying bacteria, respectively. It was shown that the denitrification process effectively strengthened the electrochemical reaction while the electron also intensified denitrification activity. Electron was transferred between electrochemical process and biological process not only by hydrogen molecule but also by new produced active hydrogen atom. Additionally, a parameter of apparent exchange current density was deprived from the cathodal polarization curve with high overpotential, and a new bio-effect current density was defined through statistical analysis, which was linearly dependent to the activity of denitrification bacteria. Activated carbon fiber (ACF) electrode was also found to be more suitable to the electrochemical denitrifying system compared with graphite and platinum.  相似文献   

14.
以模式生物酿酒酵母为材料,研究亚砷酸钠对细胞生长、抗氧化酶活性、丙二醛(MDA)含量及胞内活性氧(ROS)水平的影响。结果显示,加入亚砷酸钠(终浓度0.1~0.6 mmol·L~(-1))后,培养液在600 nm处的光密度值(OD600值)低于对照组,并呈浓度依赖性降低。经亚砷酸钠处理12 h后,酵母细胞中过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和总抗氧化能力(T-AOC)活性均增高,但胞内ROS水平和MDA含量与对照组无显著差异。砷处理24 h后,POD在0.2 mmol·L~(-1)砷处理组中活性最高,而CAT、SOD和T-AOC活性呈浓度依赖性增高;胞内ROS水平和MDA含量在高浓度砷组(0.4和0.6 mmol·L~(-1))显著增高。结果表明,亚砷酸钠可抑制酵母细胞生长,改变细胞内抗氧化酶活性,较高浓度时可引起细胞氧化损伤。  相似文献   

15.
In this study, high capacity Chestnut shell, a waste product from the chestnut sugar production industry, was successfully applied to remove Pb (II) and Cd (II) ions from aqueous solutions. Maximum adsorption capacities were found as 541.25?mg/g and 75.86?mg/g for Pb(II), and Cd(II) respectively. Several important parameters influencing the adsorption of Pb(II) and Cd(II) ions such as contact time, pH, temperature and effect of metal concentration were investigated systematically by batch experiments. Langmuir and Freundlich adsorption models were used to describe adsorption isotherms and constants. The thermodynamic parameters, such as standard free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°), of the adsorption process were calculated. The adsorbents were characterised by scanning electron microscopy. It has been observed from the experimental results that in case of both Cd (II) and Pb (II), pseudo 2nd order kinetic model. From the results, Chestnut Shell are considered as an effective, low cost and environmental friendly adsorbent for the removal of Pb (II) and Cd (II) from wastewater.  相似文献   

16.
Cadmium biosorption properties of non-living, dried river green alga from a river source, and water hyacinth weed, Eichhornia crassipes from a lake in Zimbabwe have been investigated. The cadmium uptake was found to depend on initial pH, uptake being apparently minimal at low pH values and increasing with an increase in pH. Cadmium biosorption kinetics by both samples is fast, with 80% of total uptake occurring within 60?min. The effect of initial solution pH and initial cadmium concentration on cadmium biosorption from a cadmium solution has been studied. The data for algal biomass fitted the Langmuir monolayer adsorption isotherm, while the biosorption of the metal by water hyacinth weed fitted the Freundlich adsorption isotherm with 1/n values all less than 1. Maximum metal uptake capacities were recorded using 0.35?g of biomass and a 250?mg?L?1 cadmium solution at pH 6.5 and at 25°C and these were about 85 and 50?mg?L?1 for water hyacinth weed and green alga, respectively, showing that water hyacinth weed offered a greater potential for cadmium uptake. The absorption was described by pseudo-second order rate model and the rate constant and equilibrium sorption capacity are reported.  相似文献   

17.

The primary objective of this study was to investigate the effect of biochar, produced from wheat residue at different temperatures, on the adsorption of diesel oil by loess soil. Kinetic and equilibrium data were processed to understand the adsorption mechanism of diesel by biochar-affected loess soil; dynamic and thermodynamic adsorption experiments were conducted to characterize this adsorption. The surface features and chemical structure of biochar, modified at varying pyrolytic temperatures, were investigated using surface scanning electron microscopy and Fourier transform infrared analysis. The kinetic data showed that the adsorption of diesel oil onto loess soil could be described by a pseudo-second-order kinetic model, with the rate-controlling step being intraparticle diffusion. However, in the presence of biochar, boundary layer control and intraparticle diffusion were both involved in the adsorption. Besides, the adsorption equilibrium data were well described by the Freundlich isothermal model. The saturated adsorption capacity weakened as temperature increased, suggesting a spontaneous exothermic process. Thermodynamic parameter analysis showed that adsorption was mainly a physical process and was enhanced by chemical adsorption. The adsorption capacity of loess soil for diesel oil was weakened with increasing pH. The biochar produced by pyrolytic wheat residue increased the adsorption behavior of petroleum pollutants in loess soil.

  相似文献   

18.
19.
● Dolomite-doped biochar/bentonite was synthesized for phosphate removal. ● DO/BB exhibited a high phosphate adsorption capacity in complex water environments. ● PVC membrane incorporated with DO/BB can capture low concentration phosphate. ● Electrostatic interaction, complexation and precipitation are main mechanisms. The removal of phosphate from wastewater using traditional biological or precipitation methods is a huge challenge. The use of high-performance adsorbents has been shown to address this problem. In this study, a novel composite adsorbent, composed of dolomite-doped biochar and bentonite (DO/BB), was first synthesized via co-pyrolysis. The combination of initial phosphate concentration of 100 mg/L and 1.6 g/L of DO/BB exhibited a high phosphate-adsorption capacity of 62 mg/g with a removal efficiency of 99.8%. It was also stable in complex water environments with various levels of solution pH, coexisting anions, high salinity, and humic acid. With this new composite, the phosphate concentration of the actual domestic sewage decreased from 9 mg/L to less than 1 mg/L, and the total nitrogen and chemical oxygen demand also decreased effectively. Further, the cross-flow treatment using a PVC membrane loaded with DO/BB (PVC-DO/BB), decreased the phosphate concentration from 1 to 0.08 mg/L, suggesting outstanding separation of phosphate pollutants via a combination of adsorption and separation. In addition, the removal of phosphate by the PVC-DO/BB membrane using NaOH solution as an eluent was almost 90% after 5 cycles. The kinetic, isotherm and XPS analysis before and after adsorption suggested that adsorption via a combination of electrostatic interaction, complexation and precipitation contributed to the excellent separation by the as-obtained membranes.  相似文献   

20.
Removal of Mo(VI) from aqueous solutions was investigated using cinder modified by sulfuric acid. Various parameters such as pH, agitation time, Mo(VI) concentration, and temperature have been studied. The maximum adsorption of Mo(VI) occurred at pH between 4.0 and 6.0. Kinetic studies showed that the adsorption generally obeyed a pseudo second-order model. The activation energy was 31.4?kJ?mol?1, indicating that the adsorption process was governed mainly by interactions of physical nature. Furthermore, application of Langmuir and Freundlich isotherm models to the adsorption equilibrium data showed that the adsorption behavior obeyed the Langmuir model. The adsorption capacity was found to be 10.8?g Mo(VI)?kg?1 adsorbent. Finally, thermodynamic parameters such as ΔH 0, ΔS 0, and ΔG 0 were also evaluated, which showed that the adsorption of Mo(VI) on the treated cinder was endothermic, entropy increasing, and spontaneous. In conclusion, the sulfuric acid-modified cinder was shown to be an inexpensive, effective, and simple adsorbent for the removal of Mo(VI) from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号