首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 916 毫秒
1.
In recent years, China has conducted considerable research focusing on the emission and effects of sulphur (S) on human health and ecosystems. By contrast, there has been little emphasis on anthropogenic nitrogen (N) so far, even though studies conducted abroad indicate that long-range atmospheric transport of N and ecological effects (e.g. acidification of soil and water) may be significant. The Sino-Norwegian project IMPACTS, launched in 1999, has established monitoring sites at five forest ecosystems in the southern part of PR China to collect comprehensive data on air quality, acidification status and ecological effects. Here we present initial results about N dynamics at two of the IMPACTS sites located near Chongqing and Changsha, including estimation of atmospheric deposition fluxes of NOx and NHx and soil N transformations. Nitrogen deposition is high at both sites when compared with values from Europe and North America (25–38 kg ha–1 yr–1). About 70% of the deposited N comes as NH4, probably derived from agriculture. Leaching of N from soils is high and nearly all as NO3 –1. Transformation of N to NO3 –1 in soils results in acidification rates that are high compared to rates found elsewhere. Despite considerable leaching of NO3 –1 from the root zone of the soils, little NO3 –1 appears in streamwater. This indicates that N retention or denitrification, both causing acid neutralization, may be important and probably occur in the groundwater and groundwater discharge zones. The soil flux density of mineral N, which is the sum of N deposition and N mineralization, and which is dominated by the N mineralization flux, may be a good indicator for leaching of NO3 –1 in soils. However, this indicator seems site specific probably due to differences in land-use history and current N requirement.  相似文献   

2.
The red algaGelidium sesquipedale (Clem.) Born. et Thur. has been cultured in chemostats to assess the effects of light quality and photon-fluence rate (PFR) on growth, photosynthesis and biochemical composition. Plants under blue and red light (BL and RL) showed higher growth rates than under white light (WL) of the same PFR (40 mol m–2 s–1). The light-saturated rate of photosynthesis was higher for algae grown under BL and RL than for algae grown under WL. When algae were transferred to WL of moderate PFR (100 mol m–2 s–1), the light-saturated rate of photosynthesis decreased, being higher in previously RL-grown algae than in previously BL- and WL-grown algae. The initial slope of photosynthesis-irradiance (PI) curves () was affected by PFR but not by light quality. Pigment content was little affected by light quality. Light-quality treatments also affected the biochemical composition of the alga; previous exposure to various light treatments activate or repress several metabolical pathways that are fully expressed in the subsequent phase of WL of moderate PFR. Thus, phycobiliproteins and soluble proteins increased for previously BL- and RL-grown algae, whereas insoluble carbohydrate concentration was reduced, indicating a change of the C-partitioning between carbon compounds and organic nitrogen compounds. Inorganic nitrogen metabolism was also affected by light: under WL of moderate PFR, NO3 was totally depleted from sea water, and maximal values of NO3 uptake were recorded. In addition, neither NO2 nor NH4 + was released. However, when algae were transferred to a low PFR, there was a drastic reduction of NO3 uptake under WL, which only partially recovered over time. It was accompanied by the release of NO2 , but not NH4 +, to the culture medium. Under BL and RL, however, there was a transient enhancement of NO3 uptake that was followed by a net release of NO2 and NH4 . Growth rates were not correlated with PFR. This could be due to the the dynamics of internal carbon mobilization and accumulation in the algae. When algae were exposed to a moderate PFR of WL, carbon requirements for growth were satisfied by photosynthesis. Thus, there was a net accumulation of carbon in the tissue. In contrast, when algae were exposed to low PFRs of either WL, BL or RL, observed growth rates could not be maintained by photosynthesis and carbon was mobilized.  相似文献   

3.
Saturday effects in tanker oil spills   总被引:1,自引:0,他引:1  
This paper documents a “Saturday effect” in the timing of tanker oil spills—certain types of spills happen much more frequently on this day than one would expect if the spills were uniformly distributed. The phenomenon is restricted to Europe and North America, and is associated with “vessel guidance” accidents—groundings, collisions, and rammings. Eliminating the Saturday effect would reduce tanker oil spills by around 163,000 gallons per year. Several policy responses are considered, including a Saturday harbor tax. A lower bound for an efficient tax is estimated to be $780 for a 20 million gal cargo.  相似文献   

4.
The dissolved nitrogen pool in aquatic systems is comprised of many different nitrogen forms, both inorganic and organic. Interaction among these nitrogen forms at the level of uptake and enzyme activity is, with the exception of NH4+ and NO3, not completely understood. Nitrate reductase (NR) and urease (UA) activities in the marine diatom Thalassiosira weissflogii (Grunow) Fryxell et Hasle were measured in NO3, NH4+, and urea-sufficient cultures before and after challenge additions of NH4+, NO3, and urea in a factorial design. NR and UA were constitutively expressed during growth on NO3, NH4+, and urea. Growth on NH4+ or urea resulted in NR activities that were <10% of the activity observed in the NO3-grown culture, while growth on NO3 resulted in UA values that were ~35% of the activities during growth on either NH4+ or urea. The addition of NH4+ or urea to NO3-grown cultures resulted in an immediate decrease in cellular NO3 uptake rate, which was not mirrored by an immediate repression of in vitro NR activity; however, the diel peak in NR was suppressed in these challenge experiments. The addition of NO3 or NH4+ to urea-grown cultures resulted in non-significant decreases in the urea uptake rate. UA was not impacted by NO3 addition, but NH4+ addition significantly decreased UA throughout the experiment. These studies demonstrate that the uptake and assimilation of NO3 and urea may not be subject to the same internal feedback mechanism when challenged with other nitrogen substrates.Communicated by J.P. Grassle, New Brunswick  相似文献   

5.
The estuary Byfjord (Sweden) is characterized by high primary production, a well developed meiofauna compared to the macrofauna, high epifaunal biomass, a low number of herbivorous copepods and a small fish stock. A simplified energy flow model of the ecosystem of the fjord is given. The energy transfer is approximated to 15%. About one-fourth-300 (metric) tons of carbon — of the annual primary production is suggested to be directly consumed and to produce 5 tons of zooplankton carbon and 40 tons of epifaunal (mainly Mytilus edulis) carbon. About 500 tons of carbon from the detritus pool are probably utilized in animal production. This amount will produce 5 tons of zooplankton carbon, 6 tons of meiofaunal carbon, and 3 tons of carbon from the benthic macrofauna. Production of fish is estimated at 0.3 ton carbon per year. M. edulis seems to be the only food resource in the fjord worth harvesting by man.  相似文献   

6.
Recent theoretical papers by Adar and Griffin (J. Environ. Econ. Manag.3, 178–188 (1976)), Fishelson (J. Environ. Econ. Manag.3, 189–197 (1976)), and Weitzman (Rev. Econ. Studies41, 477–491 (1974)) show that,different expected social losses arise from using effluent taxes and quotas as alternative control instruments when marginal control costs are uncertain. Key assumptions in these analyses are linear marginal cost and benefit functions and an additive error for the marginal cost function (to reflect uncertainty). In this paper, empirically derived nonlinear functions and more realistic multiplicative error terms are used to estimate expected control and damage costs and to identify (empirically) the mix of control instruments that minimizes expected losses.  相似文献   

7.
Here we evidenced the photo-induced degradation of monolinuron, a phenylurea herbicide, through the 300–450 nm light excitation of nitrite and nitrate species. The degradation pathways were compared to those obtained under direct photolysis at 254 nm. When using NO3 and NO2 as photoinducers, hydroxyphenyl-substituted photodegradation products were found to be formed specifically through the involvement of OH° radicals. NO and NO2-phenyl substituted compounds were also observed as a result of the production of NO° and NO2° radicals. Half-lives of monolinuron in aqueous solutions were measured in various conditions of concentrations of substrate and inducer, oxygen content and pH.  相似文献   

8.
Iron-stress-mediated effects on biochemical constituents of the red tide dinoflagellateGymnodinium sanguineum Hirasaka were examined in 1988 by comparing Fe-replete and Fe-deplete batch cultures. The influence of nitrogen source (NO3 or NH4) on characteristics of Fe-deplete cells was also studied [i.e., Fe-deplete/NO3-grown (= — Fe/NO3) vs Fe-deplete/NH4-grown (= — Fe/NH4)]. Common to both N sources were reductions of chlorophylla (chla) and Fe quotas (per cell volume) by 75% and ca. 1.5 orders of magnitude, respectively, under Fe depletion. The Fe requirement ofG. sanguineum exceeded those of certain neritic diatoms by one to two orders of magnitude. — Fe/NH4 cells exhibited 30 to 50% greater N quotas and free amino acid:protein ratios than did Fe-deplete cells grown on NO3. In vivo fluorescence:chla increased with Fe deficiency particularly in — Fe/NO3 cultures, surpassing — Fe/NH4 values by ca. two-fold. Effects of Fe depletion were consistent with this element's essential role in the biosynthesis of chla and components of the photosynthetic electron transport (PET) system, and also in NO3 utilization. Fe:N ratios were larger (1.5-fold) for iron-deficient NO3-grown than NH4-grown cells, likely reflecting the Fe content of NO3 assimilatory enzymes [nitrate (NR) and nitrite (NiR) reductase] and of electron transport components needed to provide reductant, coupled with a diminished capacity of — Fe/NO3 cells to acquire and assimilate nitrogen. Indicators of PET efficiency suggested that under iron stress, supply of Fe for NR and NiR is partly at the expense of iron-containing PET components. Utilization of nitrate by NO3-grown cells was inhibited sufficiently by Fe depletion to yield symptoms bordering on N deficiency. In an ecological context, the most important effect mediated by nitrogen source may be the determination of critical QFe (i.e., Fe required to just sustain maximal growth), thereby regulating the degree of growth limitation for a given subsaturating iron concentration.  相似文献   

9.
Constructing realistic energy budgets for Antarctic krill, Euphausia superba, is hampered by the lack of data on the metabolic costs associated with swimming. In this study respiration rates and pleopod beating rates were measured at six current speeds. Pleopod beating rates increased linearly with current speed, reaching a maximum of 6 beats s–1 at 17 cm s–1. There was a concomitant linear increase in respiration rate, from 1.8 mg O2 gD–1 h–1 at 3 cm s–1 to 8.0 mg O2 gD–1 h–1 at 17 cm s–1. The size of the group tested (50, 100 and 300 krill) did not have a significant effect on pleopod beating rates or oxygen consumption (ANCOVA, F=0.264; P>0.05). The cost of transport reached a maximum of 75 J g–1 km–1 at 5 cm s–1, and then decreased with increasing current speed to 29 J g–1 km–1. When considered in light of energy budgets for E. superba, these data indicate that the cost of swimming could account for up to 73% of total daily metabolic expenditure during early summer.Communicated by G.F. Humphrey, Sydney  相似文献   

10.
Swimming efficiency (the ratio of thrust power required to overcome hydrodynamic drag to net metabolic energy expenditure) was calculated for the vertically migrating euphausiid Euphausia pacifica swimming at speeds of 1–20 cm s–1 and at temperatures of 8° and 12°C. Efficiencies ranged from 0.014 to 2.8% at 8°C and 0.009 to 1.69% at 12°C. A comparison with efficiency in fishes 2–3 orders of magnitude larger in weight (efficiency range 10–25%) indicates that locomotion in E. pacifica is far less efficient, a probable result of the organism's small size (x=33.5 mg WW) and multiple-paddle mode of propulsion. Net cost of transport of E. pacifica is three to six times the cost of a hypothetical value for sockeye salmon. Low swimming efficiencies in zooplankton such as E. pacifica are responsible for the underestimation of zooplankton swimming costs. Multiple-paddle propulsion is less efficient than the undulatory mode of fishes.  相似文献   

11.
Effects of benthic macrofauna (Corophium volutator, Hydrobia sp., Nereis virens) on benthic community metabolism were studied over a 65-d period in microcosms kept in either light/dark cycle (L/D-system) or in continuous darkness (D-system). Sediment and animals were collected in January 1986 in the shallow mesohaline estuary, Norsminde Fjord, Denmark. The primary production in the L/D-system after 10 d acted as a stabilizing agent on the O2 and CO2 flux rates, whereas the D-system showed decreasing O2 and CO2 flux throughout the period. Mean O2 uptake over the experimental period ranged from 0.38 to 1.24 mmol m–2 h–1 and CO2 release varied from 0.80 to 1.63 mmol m–2 h–1 in both systems. The presence of macrofauna stimulated community respiration rates measured in darknes, 1.4 to 3.0 and 0.9 to 2.0 times for O2 and CO2, respectively. In contrast, macrofauna lowered primary production. Gross primary production varied from 1.06 to 2.26 mmol O2 m–2 h–1 and from 1.26 to 2.62 mmol CO2 m–2 h–1. The community respiratory quotient (CRQ, CO2/O2) was generally higher in the begining of the experiment (0–20 d, mean 1.89) than in the period from Days 20 to 65 (mean 1.38). The L/D-system exhibited lower CRQ (ca. 1) than the D-system. The community photosynthetic quotient varied for both net and gross primary production from 0.64 to 1.03, mean 0.81. The heterotrophic D-system revealed a sharp decrease in the sediment content of chlorophyll a as compared to the initial content. In the autotrophic L/D-system, a significant increase in chlorophyll a concentration was observed in cores lacking animals and cores with C. volutator (The latter species died during the experiment). Due to grazing and other macrofauna activities other cores of the L/D-system exhibited no significant change in chlorophyll a concentration. Community primary production was linearly correlated to the chlorophyll a content in the 0 to 0.5 cm layer. Fluxes of DIN (NH4 ++NO2 +NO3 ) did not reveal significant temporal changes during the experiment. Highest rates were found for the cores containing animals, mainly because of an increased NH4 + flux. The release of DIN decreased significantly due to uptake by benthic microalgae in the L/D-system. No effects of the added macrofauna were found on particulate organic carbon (POC), particulate organic nitrogen (PON), total carbon dioxide (TCO2) and NH4 + in the sediment. The ratio between POC and PON was nearly constant (9.69) in all sediment dephts. The relationship between TCO2 and NH4 + was more complex, with ratios below 2 cm depth similar to those for POC/PON, but with low ratios (3.46) at the sediment surface.  相似文献   

12.
A. Israel  S. Beer  G. Bowes 《Marine Biology》1991,110(2):195-198
Photosynthetic properties of the common red algaGracilaria conferta, collected from the eastern Mediterranean Sea were investigated in 1989, in order to begin evaluating its adaptative strategies with regard to the inorganic carbon composition of seawater, and to test whether the alleged C4 photosynthesis of anotherGracilaria species is common within the genus. Net photosynthetic rates ofG. conferta were, under ambient conditions of inorganic carbon (ca. 10µM, CO2 and 2.2 mM HCO 3 - ), not sensitive to O2 over the range 10 to 300µM, and the CO2 compensation point was low (ca. 0.005µM). Ribulose-1,5-bisphosphate carboxylase/oxygenase was the major carboxylating enzyme, with a crude extract activity of 175µmol CO2 g–1 fresh wt h–1 while phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase were present at 70 and 20%, respectively, of that activity. No activities of the decarboxylases NAD-and NADP-malic enzyme could be detected. The14C pulse-chase incorporation pattern showed thatG. conferta fixes inorganic carbon via the photosynthetic carbon reduction cycle only, with no evidence for photosynthetic C4 acid metabolism. Photosynthesis at the natural seawater pH of 8.2 was, at 25°C and saturating light, saturated at the ambient inorganic carbon concentration of 2.5 mM. It is proposed that, under ambient inorganic carbon conditions, a CO2 concentrating system other than C4 metabolism provides an internal CO2 concentration sufficient to suppress the O2 effect on ribulose-1,5-bisphosphate carboxylase/oxygenase and, thus, on photorespiration, in a medium where the external free CO2 concentration is lower than theK m(CO2) of the carboxylating enzyme. Since inorganic carbon, under natural saturating light conditions, seems not to be a limiting factor for photosynthesis ofG. conferta, it likely follows that other nutrients limit the growth of this alga in nature.  相似文献   

13.
In their recently revised book Baumol and Oates (“The Theory of Environmental Policy,” 2nd ed., Cambridge Univ. Press, Cambridge, UK 1988) accept Bird's argument on the optimal taxation policy when externalities are shiftable and depletable. Their conclusion is that the standard Pigouvian tax which is placed upon the generator of a negative externality can be extended to tax the victims who shift the externality to others or extended to compensate recipients in order to achieve Pareto optimality. It is shown in this paper that their conclusion is not free from error, because the possibility of resisting a shifted externality and conjectural variations by recipients is not recognized. Whether an externality is shiftable depends not only on the shifting activity of the original victim but also the resisting activity of his neighbors and their conjectures about each other's action. As such, the shifters should be taxed and the recipients should be compensated at the same rate per unit of externality shifted if the tax base is the output of the shifting and resisting activities. On the other hand, if the tax base is the input which produced the shifting of the externality, then both the shifters and the recipients should be subject to a tax (or subsidy) per unit of input that they have engaged in. Whether it is a tax or a subsidy depends on the direction and magnitude of the conjectural variation. The model and its policy implication can be generalized to cover the omnipresent and wasteful rent seeking activities.  相似文献   

14.
A study has been conducted over a period of one year on measurements of air pollution in the Shuaiba Industrial Area (SIA) of Kuwait. The study included analysis of pollutant behaviour relative to the wind speed and direction. SIA comprises several large scale industries including three petroleum refineries, two power plants, two fertilizer plants, a cement plant, a chlorine and soda plant, a commercial harbour and two large oil loading terminals. Measurements of 15 parameters have been carried out every 5 minutes using a mobile laboratory fitted with an automatic calibrator and a data storage system. The pollutants studied include methane, non‐methane hydrocarbons (NMHC), carbon monoxide, carbon dioxide, nitrogen oxides (NO, NO2, and NO x ), sulphur dioxide, ozone and suspended dust. Meteorological parameters monitored simultaneously include wind speed and direction, air temperature, relative humidity, solar radiation, and barometric pressure. The air quality data collected using the mobile laboratory have been used to calculate the diurnal and monthly variations in the major primary and secondary pollutants. Distribution levels of these pollutants relative to wind direction and speed have also been used in the analysis. The results show large diurnal variations in some pollutant concentrations. Generally, two types of concentration variations have been found, depending on whether the species is a primary or a secondary pollutant. Diurnal variations with two maxima were observed in the concentrations of primary pollutants including NO, SO2, NMHC, CO and suspended dust, whereas a single maximum was observed for secondary pollutants such as O3and NO2. The monthly variations of SO2and NO x showed maximum values during the warm months. However, ozone showed a quite marked seasonal variation with maxima during spring and late summer and a minimum during the early summer. The results also indicated a common source for NO x , SO2, NMHC, CO and suspended dust to the North‐West (NW) of the monitoring station. Moreover for NO x and SO2, another less significant source is to the South‐South‐West (SSW) and South‐West (SW) of the monitoring station.  相似文献   

15.
The control mechanisms within the pelagic microbial food web of the oligotrophic Gulf of Aqaba and the northern Red Sea were investigated in the spring of 1999. Nutrient conditions and potential grazer impact were manipulated in a series of dilution experiments. Ambient nutrient concentrations and autotrophic biomass were very low (0.23–1.21 µmol NO3 l–1, 0.06–0.98 µmol NH4 l–1, 1.08–1.17 µmol Si l–1, 0.08–0.12 µmol P l–1, 0.15–0.36 µg chlorophyll a l–1). The planktonic community was characterized by low abundances [3.0–5.5×105 heterotrophic bacteria ml–1, 0.58–7.2×103 ultraphytoplankton <8 µm ml–1 (small eukaryotic photoautotrophs and Prochlorococcus sp., excluding Synechococcus sp.), 0.45–4.4×104 Synechococcus sp. ml–1, 0.32–1.2×103 heterotrophic nanoflagellates ml–1, 1.3–3.8×103 phytoplankton >8 µm l–1, 0.93–5.4×102 microzooplankton l–1] and dominated by small forms (0.2–8 µm). Dinoflagellates and oligotrichous ciliates were the most common groups in initial samples among the phytoplankton >8 µm and microzooplankton, respectively. Results show that bottom-up and top-down control mechanisms operated simultaneously. Small organisms were vulnerable to grazing, with maximum grazing rates of 1.1 day–1 on heterotrophic bacteria and 1.3 day–1 on ultraphytoplankton. In contrast, algae >8 µm showed stronger signs of nutrient limitation, especially when the final assemblages were dominated by diatoms. Synechococcus sp. were not grazed and only showed moderate to no response to nutrient additions. The high spatial and temporal variation of our results indicates that the composition of the planktonic community determines the prevailing control mechanisms. It further implies that, at this transitional time of the year (onset of summer stratification), the populations fluctuate about an equilibrium between growth and grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
In the marine green alga Ulva rigida C. Agardh, nitrate reductase (NR) is synergetically induced by blue light and nitrate. The present study examines the effect of blue light and a large NO 3 pulse (0.3 mM) on relevant variables of NO 3 -assimilation such as NO 3 -uptake, intracellular NO 3 -storage, NR activity, in vivo NO 3 -reduction rate and NO 2 and NH 4 + -accumulation. Nitrate uptake started immediately upon addition of NO 3 , suggesting the presence of a constitutive carrier, however in the first 1.5 to 2 h, periods of net NO 3 efflux were frequent. After this time, NO 3 -uptake and intracellular NO 3 -accumulation proceeded linearly with time, suggesting the existence of a different NO 3 -uptake mechanism, which seems to be inducible. Our results indicate that in vivo NO 3 -reduction is not exclusively dependent on the potential NR activity. In U. rigida, during the first 2 h after a NO 3 pulse (300 M) there were clear indications that the induction state of the NO 3 -carrier limits the reduction rate of NO 3 . Once the induction of the NO 3 -transporter had been completed (1.5 to 2 h), the NO 3 -assimilation pathway reached a steady state, NO 3 -uptake rate, NO 3 -reduction rate and NO 2 and NH 4 + -accumulation being linear with time. Since the reduction of NO 3 leads mainly to the accumulation of NH 4 + , we conclude that, after the NO 3 -reduction itself, NH 4 + -fixation into carbon skeletons is the limiting step in the assimilation of NO 3 by U. rigida under blue light.  相似文献   

17.
The photocatalytic oxidation of humic substances in aqueous solutions and natural waters with TiO2 attached to buoyant, hollow glass micro-spheres was studied. A maximum oxidation efficiency of 3.6 mg W–1 h–1 was achieved in neutral or alkaline media at a plane surface concentration of the catalyst attached to the micro-spheres of 25 g m–2. Proceeding by different mechanisms in acidic and alkaline media, the photocatalytic oxidation efficiency did not benefit from an excessive presence of hydroxyl radical promoters, hydrogen peroxide and alkali.  相似文献   

18.
In this study two sites were selected in order to investigate groundwater contamination and spatial relationships among groundwater quality, topography, geology, landuse and pollution sources. One site is the Asan area, an agricultural district where pollution sources are scattered and which is mainly underlain by granite of Cretaceous age. The other site is the Gurogu area of Seoul city, an industrial district where an industrial complex and residential areas are located and which is mainly underlain by gneiss of Precambrian age. Groundwater samples collected from these districts were analysed for chemical constituents. An attribute value files of chemical constituents of groundwater and the spatial data layers were constructed and pollution properties were investigated to establish out spatial relationships between the groundwater constituents and pollution sources using geographic information systems (GIS).Relatively high contents of Si and HCO3 in the groundwater from the Asan area reflect the effect of water–rock interaction whereas high contents of Cl, NO3 and Ca2+ in the groundwater from the Gurogu area are due to the pollution of various sources. The significant seasonal variation of SiO2, HCO2 and Ca2+ contents, and that of Ca2+ content were observed in the Asan and the Gurogu areas, respectively. Seasonal variation of pollutants such as Cl, NO3 and SO4 2– was not observed in either area. Pollution over the critical level of the Korean drinking water standard has been investigated from 15 sampling sites out of 40 in the Asan area, and 33 sampling sites out of 51 in the Gurogu area. Pollution by NO3 , Cl, Fe2+, Mn2+, SO4 2– and Zn2+ in the groundwater from the industrial district (Gurogu area) and that of NO3 , SO4 2– and Zn2+ in the groundwater from the agricultural district (Asan area) were observed. The principal pollutant in both areas is NO3 . Deep groundwater from the Asan area is not yet contaminated with NO3 except for one site, but most of the shallow groundwater site occurring near the potential point sources is seriously contaminated. From the result of buffering analysis, it seems clear that factories and stock farms are the principal pollution sources in the Asan area. The groundwater from the Gurogu area has already been seriously polluted considering the fact of NO3 contamination of deep groundwater. Chlorine pollution of shallow groundwater in the Gurogu area was also observed. Spatial relationship between pollution level and its source was clarified in this study by using GIS, which will be applicable to the effective management of groundwater quality.  相似文献   

19.
Large areas of mangroves in India are heavily disturbed by cattle grazing, hypersalinity, and other human-induced impacts. In two disturbed Avicennia marina forests and two undisturbed A. marina and Rhizophora apiculata forests in the Pichavaram mangroves of the Vellar–Coleroon estuarine complex, southeast India, we measured the rates and pathways of microbial decomposition of soil organic matter to determine if human impact is altering biogeochemical activity within these stands. Rates of total carbon oxidation (TCOX) were higher in the undisturbed A. marina forest (mean 199 mol C m–2 year–1) than in the two impacted stands (43 and 79 mol C m–2 year–1); rates of total carbon oxidation in the R. apiculata forest averaged 75 mol C m–2 year–1. Sulphate reduction (range 21–319 mmol S m–2 day–1) was the major decomposition pathway (65–85% of TCOX), except at the most disturbed forest (30% of TCOX). Rates of sulphate reduction at all sites peaked in sub-surface soils to a depth of about 1 m, leading to little carbon burial (3–5% of total C input). There was some evidence of measurable iron and manganese reduction in association with tree roots. Rates of microbial activity were rapid in comparison with rates measured in other mangrove soils, reflecting high rates of phytoplankton production and organic matter retention in this lagoon. Human-induced disturbance creates a sharp zonation of dry, hypersaline soil overlying less saline, wetter soil, suppressing surface microbial and root growth. We conclude that this vertical alteration of soil characteristics and biogeochemistry shifts the cycling of nutrients between trees and microbes to a disequilibrium state, partly explaining why mangroves are stunted in these declining forests.Communicated by G. F. Humphrey, Sydney  相似文献   

20.
The nature of protein catabolism in a wide range of species of midwater zooplankton was investigated. The weight-specific ammonia excretion rates (g NH3–N g–1 dry wt h–1, y) decline exponentially with minimum depth of occurreece (MDO, x), y=163.4 x–0.479±0.212 (95%ci) (CI=confidence interval), when temperature is held constant. The change in ammonia excretion can be partially explained by the decrease in percent protein (%P) with MDO, %P=80.17 MDO–0.148±0.122 (95%ci) The atomic O:N ratio of freshly caught zooplankters ranged from 9.1 to 91, with most measurements between 9 and 25. Detailed studies were carried out on the response of one of the species studied (Gnathophausia ingens) to starvation (28 d). After 14 d of starvation the average ammonia excretion rate declined by more than 75% to less than 1 g NH3–N g–1 wet wt h–1, although the average oxygen consumption declined by only 13% within the first 7 d of starvation and then remained stable. This differential response of oxygen consumption and ammonia excretion to starvation resulted in an increase in the average O:N ratio of starved animals from an initial 33 to 165 after 21 d. The average O:N ratios of fed mysids remained below 38 during the experiment. G. ingens maintains a relatively uniform metabolic rate during starvation by relying more heavily on its large lipid stores than when being fed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号