首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用煤矸石制取水玻璃的研究   总被引:6,自引:0,他引:6  
本文研究了用煤矸石制取水玻璃的可行性,利用正交试验,研究了焙烧温度、焙烧时间、反应温度、NaOH浓度、渣样粒度等因素对制取过程的影响,确定了最佳操作条件。  相似文献   

2.
通过炼铜烟囱灰的焙烧脱砷实验,研究了粒径、温度以及双氧水等对脱砷效果的影响,结果表明:未经过筛选的烟渣焙烧后砷含量最低,即砷的去除率最高;铜烟囱灰焙烧去砷的最佳温度为700℃,焙烧时间2h,砷去除率可达82. 75%。  相似文献   

3.
采用浸渍法在不同焙烧温度下制备了用于湿式H202降解吡虫啉农药废水的Cu-Ni-Ce/SiO2催化剂,利用TG、BET、XRD和XPS等对其进行了表征,研究了焙烧温度对催化剂表面结构的影响以及催化剂表面结构与活性及稳定性之间的关系.结果表明:降低焙烧温度,cu、Ni、ce之间的相互作用使得催化剂晶粒尺寸减小,比表面积增加,Cu、Ni固溶体量和催化剂表面化学吸附氧量增加.湿式H,O,降解吡虫啉农药废水时,600℃下焙烧获得的Cu-Ni-Ce/Si02催化剂活性最高;在催化剂用量10 g·L-1、反应温度为110℃、双氧水用量为理论需用量、进水pH为9.0、反应时间为60 min的条件下,COD去除率为91.5%,活性组分溶出量较小.研究结果表明,焙烧温度对CuO、NiO、CeO,及Cu、Ni固溶体之间的相瓦作用有较大影响,从而影响了催化剂湿式降解吡虫啉农药废水的活性和稳定性.  相似文献   

4.
制备条件对硅胶负载氧化锆吸附除氟的影响   总被引:2,自引:0,他引:2  
应用浸渍法制备了硅胶负载氧化锆除氟吸附剂,研究了焙烧温度、硅胶粒度、浸渍时间、浸渍温度、浸渍液浓度、浸渍固液比和浸渍次数等制备参数对吸附剂吸附容量的影响.实验发现焙烧温度有较大影响,450℃焙烧有最大的吸附量,再升高温度吸附量迅速下降.浸渍可在2h内达到平衡.浸渍温度越高,浸渍液浓度越高,则吸附容量越大.采用较高浓度一次浸渍优于低浓度多次浸渍.硅胶粒度和浸渍固液比也影响吸附量,粒度越大吸附量越小,粒度小于0.25mm后吸附量趋于稳定.  相似文献   

5.
氧化铝负载镧去除水中F-的研究   总被引:2,自引:0,他引:2  
通过固相反应合成了氧化铝负载的氧化镧吸附剂并研究了其对水中F-的吸附.结果表明.合成的材料对F-有很好的去除效果,最大吸附量达到53.4 mg·g-1;适当提高吸附温度和氧化镧负载量都能在一定范围内提高吸附量;较低的固相反应焙烧温度有利于提高去除率,随着焙烧温度的升高,吸附量从170℃焙烧的42.2 mg·g-1下降到了350℃焙烧的32.9 mg·g-1.同时,吸附剂表现出了很好的适应性,在较宽的pH范围内都能保持较高的吸附量.  相似文献   

6.
改性活性炭吸附净化黄磷尾气中的H2S   总被引:1,自引:0,他引:1  
研究了以Cu^2+离子活性溶液制备改性活性炭吸附净化黄磷尾气中H2S的相关问题,考察了改性活性炭制备过程中的浸渍液浓度、干燥温度和焙烧温度的影响,以及温度和氧含量对吸附的影响;并对空白活性炭、改性活性炭吸附前后做SEM表征。研究结果表明,浸渍液浓度0.05mol/L、干燥温度120℃、焙烧温度250℃为改性活性炭制备的最佳条件;吸附反应阶段较适宜的温度为95℃,氧含量为1%;结合扫描电镜初步表明,改性后的活性炭S容量增加,吸附效果明显。  相似文献   

7.
制备及反应条件对Pt/Al2O3蜂窝状催化剂性能的影响   总被引:3,自引:0,他引:3  
采用多次涂层 浸渍法制备了蜂窝状Pt Al2 O3 催化剂 .并对焙烧温度和焙烧时间等不同制备条件和反应温度、O2 浓度和空速等不同反应条件下NOx 的选择性催化还原性能进行了研究 .实验表明 ,蜂窝状Pt Al2 O3 催化剂上NOx 转化率在反应温度为 30 0℃左右时出现最高值 .而随反应温度的升高 ,达到最高转化率所需的O2 浓度不断减小 ,分别为 8% ,6 %和 4 % .这可能是由于在高温下O2 会与NO发生竞争吸附 ,从而阻碍了NO催化还原反应的进行 ;同时随着空速的依次增加 ,催化剂的活性逐渐下降 ,催化剂活性曲线的峰值依次向高温方向移动 .实验还说明 ,在过高的焙烧温度和较长的焙烧时间的制备条件下 ,蜂窝状Pt Al2 O3 的催化性能明显下降 .这是因为高的焙烧温度和较长的焙烧时间能够导致蜂窝状Pt Al2 O3 催化剂的表面发生烧结现象 ,使得催化剂的比表面减小 ,从而导致活性降低 .  相似文献   

8.
以铁尾矿为原料,活性炭为还原剂,在氮气保护下研究通过磁化焙烧—磁选分离方法回收铁的可能性,并用磁选精矿产率、回收率以及精矿、尾渣品位等指标,探究焙烧温度、配炭比、焙烧时间等因素对分离结果的影响。研究结果表明:最佳实验条件为焙烧温度800℃、氮气流速0.5 L/min、配炭比0.8 g炭/100 g铁尾矿、焙烧时间10 min、磨矿时间2 min(289 Hz棒磨)、激磁电流2 A。在此条件下,铁精矿产率约为23%,回收率大于80%,精矿品位为58%,尾矿品位为4%。  相似文献   

9.
采用废弃PVC作为氯化剂,通过氯化焙烧与低温水浸复合,有效提高了废弃锂离子电池正极材料LiCoO2中钴和锂的浸出效率。系统研究了焙烧温度、氯化剂与正极材料LiCoO2物料比、焙烧时间等参数对钴和锂浸出率的影响规律和作用机制。研究结果表明:在焙烧温度500℃、物料比5∶1、焙烧时间120 min条件下,再经60℃水浸后,钴的浸出率达到95%以上,锂的浸出率高达99%。同时采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)表征焙烧前后材料的晶体结构和表面形貌以及元素化合价变化,阐明了氯化焙烧LiCoO2过程中钴和锂的物相间转化机制与动力学机理。与传统的湿法、火法和生物冶金相比,该废旧锂离子电池正极材料回收技术拥有更低的能源强度和更好的工业应用前景。  相似文献   

10.
以电解锰阳极泥为研究对象,将经过预处理的电解锰阳极泥经高温焙烧处理,然后采用醋酸铵溶液进行浸取试验,对焙烧处理前后和浸取后样品进行扫描电镜(SEM)表征分析,研究了焙烧后的电解锰阳极泥中的铅离子的浸出行为,并通过单因素分析初步探讨了焙烧温度、醋酸铵浓度、液固比、浸取时间对阳极泥中铅离子浸出迁移的影响。试验结果表明:未经焙烧处理的电解锰阳极泥颗粒的微观结构是致密性晶体,而经高温焙烧处理的电解锰阳极泥颗粒则均形成网状结构,且经750℃焙烧的电解锰阳极泥颗粒网状空隙尺寸较650℃焙烧的稍大;浸取处理后的焙烧阳极泥微观结构变化不明显;未经焙烧处理的阳极泥中铅的浸出率低于9%,而经650℃和750℃焙烧的阳极泥的铅浸出率均可达到90%左右。  相似文献   

11.
为了解决臭氧催化氧化技术中废旧催化剂处理困难的问题,对用于某石化废水生化出水处理长达5年的废旧臭氧催化剂进行了焙烧再生研究.通过焙烧能够有效燃烧去除催化剂表面及孔隙中的有机物质,增大催化剂孔径和孔隙率,从而恢复废旧催化剂的部分活性.单因素试验对催化剂焙烧温度和焙烧时间优化结果表明:(1)随着焙烧温度从200℃提高到500℃,再生催化剂用于臭氧催化对石化废水生化出水TOC(总有机碳)的去除效果逐渐提升,500℃时TOC去除率可达44.30%,进一步提高焙烧温度去除效果提升不明显.(2)焙烧时间为2、3、4和5 h时,再生催化剂处理石化废水效能随焙烧时间增加先升高再降低,4 h时TOC去除效果最好.(3)在相同运行条件下,优化焙烧条件(500℃、4 h)下得到的再生催化剂对石化废水生化出水的TOC去除率可达新催化剂的77.46%,相较于新催化剂,再生催化剂的颗粒尺寸和平均孔径减小,而比表面积有所增大.(4)通过皮尔逊相关性分析,探索了废水中有机物和三维荧光测试结果的相关性,认为荧光区域积分体积可以间接反映石化废水中的有机物含量,也可间接反映臭氧再生催化剂的催化性能.研究显示,直接焙烧可以作...  相似文献   

12.
制备条件对TiO2微粒的气固复相光催化活性的影响   总被引:1,自引:0,他引:1  
本文以Ti (OBu) 4 为原料用sol-gel法制备了TiO2 微粒 ,研究了TiO2 微粒在C7H16-O2-N2 气相体系中的光催化活性 ,发现制备中使用的酸性抑制剂种类、酸度、焙烧温度影响TiO2 微粒的气相光催化活性 ,低焙烧温度、盐酸做抑制剂、pH =0时制备的TiO2 超微粒子的气固复相光催化活性最佳。  相似文献   

13.
以油页岩废渣为原料,通过酸浸法浸取油页岩灰渣中的铝酸钠溶液。采用焙烧活化方法将废渣中含铝的低活性晶体物质活化为高活性半晶体或非晶体物质,利用酸浸法浸取焙烧后的高活性含铝废渣,得到铝液;依据试验分析了影响酸浸法浸取铝酸钠溶液的主要影响因素为焙烧温度、焙烧时间、浸取酸浓度和浸取温度;得出酸浸法的最佳工艺参数:活化温度850℃,活化时间3h,选用酸浓度40%,浸取温度60℃,此时油页岩废渣铝浸取率为75%。  相似文献   

14.
在分析重金属捕集剂捕集电镀废水中金属离子原理与工艺的基础上,推测电镀污泥中金属的存在形式以及钠化焙烧过程污泥中主要金属可能发生的化学反应,并借助相关热力学计算,研究各种反应进行的程度以及反应的先后顺序,探讨有利于生成NaAlO_2、Na_2ZnO_2、Na_2CrO_4的污泥焙烧条件,并研究了污泥苏打焙烧-水浸探索性实验。研究结果表明,在污泥焙烧过程通过控制焙烧温度、焙烧气氛、Na_2CO_3与石灰加入量,使污泥中的铝、铬、锌尽可能最大程度转化成NaAlO_2、Na_2ZnO_2、Na_2CrO_4,从而在水浸过程使灰渣中的Al、Cr、Zn与Cu、Ni、Fe分离。研究结果为电镀污泥实际焙烧过程条件的控制以及灰渣中NaAlO_2、Na_2ZnO_2、Na_2CrO_4分离工艺的选择提供理论与技术支持。  相似文献   

15.
钠化氧化法回收电镀污泥中铬的试验研究   总被引:1,自引:0,他引:1  
采用中温焙烧-钠化氧化法从电镀污泥中回收重金属铬,通过单因素实验确定影响回收效率的主要因素为:焙烧温度、污泥与碳酸钠之比、水浸时间、焙烧时间。采用正交实验找出最优的操作条件为焙烧温度650℃、污泥:Na2CO3为1:1、水浸时间1.0h、焙烧时间2h。试验表明回收铬的质量可达到污泥质量的8.34%,铬回收率可>90%。  相似文献   

16.
磁性微球负载光催化剂制备及处理造纸废水研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,在磁性颗粒表面包覆TiO2,制备了易于固液分离的磁载光催化剂TiO2/SiO2/Fe3O4,通过XRD和TEM对产物的晶体结构、晶粒大小、形貌进行了表征,讨论了焙烧温度、焙烧时间、催化剂用量和光照时间等对TiO2光催化剂处理造纸废水的影响。结果表明:焙烧温度为500℃、焙烧时间3.5h时,光催化活性最高;催化剂用量为2.5g/L,光照时间4h时TiO2降解造纸废水的能力最强。  相似文献   

17.
干法半干法脱硫灰升温过程中二氧化硫的逸出规律   总被引:1,自引:0,他引:1  
通过改变焙烧温度、焙烧时间和通气流量等条件,研究了干法半干法脱硫灰中二氧化硫的逸出规律。结果表明:850℃~1050℃,二氧化硫的逸出量随着温度的升高而增加,大约由0.15mg/g增加到0.5mg/g;脱硫灰焙烧1h后二氧化硫逸出量比焙烧10min后增加最多为0.047mg/g,因此焙烧10min二氧化硫基本全部逸出;在通气量0.6L/min~0.9L/min的范围内,二氧化硫逸出量随着通气流量的增加而增加,不同焙烧时间时的增加量都约为0.062mg/g,然后趋于平缓,最后基本不受通气流量的影响;计算得出二氧化硫最大排放浓度为101.4mg/m3,远远低于国家标准的规定800mg/m3,因此在脱硫灰渣的再利用中不会对环境造成危害。  相似文献   

18.
利用X射线粉末衍射(XRD)、透射电子显微镜(TEM)、差热重量分析法(TG)、比表面积分析仪(BET)等研究了除铁除锰水厂富含铁锰氧化物的反冲洗泥经过不同焙烧温度处理后的产物结构变化对吸附除砷的影响.结果表明:铁锰氧化物反冲洗泥原料为无定型结构,粒径小且比表面积大,能高效除砷;焙烧温度为150℃时,结晶水开始脱除,比表面积与孔容变化不大,As(Ⅲ)和As(V)的去除率均略微增加;焙烧温度为500℃时,脱羟基反应促使微孔逐渐合并成介孔,比表面积降低,As(Ⅲ)和As(V)的去除率降至70%;当焙烧温度升高到800℃后,热处理产物脱水完全,微孔和介孔随焙烧温度升高逐渐合并成大孔,比表面积和孔容分别下降至12.755m2/g和0.052cm3/g,平均孔径增长了约10nm,且产生的赤铁矿晶体颗粒间出现烧结现象,对As(Ⅲ)和As(V)的去除率大幅下降,为原来的10%左右.  相似文献   

19.
采用浸渍焙烧法制备了以Y分子筛为载体的Mn-RE复合催化剂,置于电解槽内形成反应床体,构建Mn-RE多相催化电解氧化体系处理人工模拟苯酚废水.考察了浸渍液中锰的质量分数、稀土元素组成和质量分数、焙烧温度、焙烧时间对电催化活性的影响,用SEM和XRD等手段对催化剂的微观结构、表面形貌进行了表征,探讨了Mn-RE/Y分子筛催化剂对含酚废水降解的电催化效果.研究表明, Mn-RE/Y分子筛催化剂的最佳制备条件是浸渍液中锰质量分数6%,铈质量分数为3%,焙烧温度为550℃,焙烧时间为5h.Y分子筛中引入Mn、Ce后没有破坏Y分子筛的晶体结构, Mn-RE/Y分子筛催化剂的表面并没有检测到稀土氧化物和锰氧化物的物相.反应过程中, Mn-RE/Y分子筛在阴极和阳极的同时催化氧化作用强化了含酚废水的降解效果.  相似文献   

20.
分别采用(NH4)2HPO4,NH4HCO3,NaHCO3等对赤泥进行活化处理,并制备成球形颗粒,同时研究了活化剂浓度、焙烧温度、焙烧时间等对赤泥除氟剂吸附性能的影响。结果表明:在活化剂质量浓度为10%左右、焙烧温度500℃,焙烧时间2 h时制备的除氟剂具有较好的除氟效果,且采用(NH4)2HPO4,NH4HCO3,NaHCO3对赤泥进行活化处理制备的除氟剂能分别使溶液中氟离子的质量浓度从19 mg/L分别降低到0.085,0.13及0.19 mg/L,相应地除氟剂的吸附容量均达0.94 mg/g以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号