首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although viviparity is most often associated with mammals, roughly one fifth of extant squamate reptiles give birth to live young. Phylogenetic analyses indicate that the trait evolved more than 100 times within Squamata, a frequency greater than that of all other vertebrate clades combined. However, there is debate as to the antiquity of the trait and, until now, the only direct fossil evidence of squamate viviparity was in Late Cretaceous mosasauroids, specialised marine lizards without modern equivalents. Here, we document viviparity in a specimen of a more generalised lizard, Yabeinosaurus, from the Early Cretaceous of China. The gravid female contains more than 15 young at a level of skeletal development corresponding to that of late embryos of living viviparous lizards. This specimen documents the first occurrence of viviparity in a fossil reptile that was largely terrestrial in life, and extends the temporal distribution of the trait in squamates by at least 30 Ma. As Yabeinosaurus occupies a relatively basal position within crown-group squamates, it suggests that the anatomical and physiological preconditions for viviparity arose early within Squamata.  相似文献   

2.
The presence of salt-excreting glands in extinct marine sauropsids has been long suspected based on skull morphology. Previously, we described for the first time the natural casts of salt-excreting glands in the head of the Jurassic metriorhynchid crocodyliform Geosaurus araucanensis from the Tithonian of the Vaca Muerta Formation in the Neuquén Basin (Argentina). In the present study, salt-excreting glands are identified in three new individuals (adult, a sub-adult and a juvenile) referable to the same species. New material provides significant information on the salt glands form and function and permit integration of evolutionary scenarios proposed on a physiological basis in extant taxa with evidence from the fossil record. G. araucanensis represents an advanced stage of the basic physiological model to marine adaptations in reptiles. G. araucanensis salt glands were hypertrophied. On this basis, it can be hypothesized that these glands had a high excretory capability. This stage implies that G. araucanensis (like extant pelagic reptiles, e.g. cheloniids) could have maintained constant plasma osmolality even when seawater or osmoconforming prey were ingested. A gradual model of marine adaptation in crocodyliforms based on physiology (freshwater to coastal/estuarine to estuarine /marine to pelagic life) is congruent with the phylogeny of crocodyliforms based on skeletal morphology. The fossil record suggests that the stage of marine pelagic adaptation was achieved by the Early Middle Jurassic. Salt gland size in the juvenile suggests that juveniles were, like adults, pelagic.  相似文献   

3.
The genus Khoratpithecus, a hominoid thought to be related to the orangutan lineage, is represented by two known fossil species K. chiangmuanensis and K. piriyai. Both were discovered in Southeast Asia (Thailand) and are dated to the Middle and Late Miocene, respectively. In this study, dental topographic and microwear texture analyses were used to examine molars from both of these species, with the goal of understanding their dietary preferences. Although sample sizes are small for Khoratpithecus, available data are compared to that collected for extant apes. Environmental evidence, such as botanical remains and sedimentological data, is also considered for comparisons with dietary reconstruction. Results from dental topographic analysis suggest that the two fossil species were better adapted to a diet of fruits than to one of leaves, much like the living orangutan or chimpanzee. Results from microwear texture analysis further support this, suggesting that Khoratpithecus preferred soft fruits to hard fruits or seeds. And finally, the botanical and sedimentological evidence point to environments for Khoratpithecus that would have been compatible with a fruit-eating species. Given the small sample sizes available for analysis, however, definitive judgments are not yet possible at this time.  相似文献   

4.
Synodontis (Mochokidae, Siluriformes) is a freshwater catfish endemic to Africa. The 118 extant species are present in almost all hydrographic basins. Some species are restricted to a single stream, whereas others have a vast distribution. Synodontis is known in the fossil record since the Miocene, and its history depends on the connections among African basins through time. The identification of species in the fossil record is essential to reconstruct this historical pattern. Catfish pectoral and dorsal spines are robust, they preserve well and they form most of the fossil remains for the genus Synodontis. Unfortunately, the criteria for the identification of extant Synodontis species are not applicable to fossil specimens. Here, we define 11 original morphological characters that permit to discriminate four extant species from the Chad-Chari hydrographic system. Six of these characters are defined on pectoral spines and five on dorsal spines. We then show that these characters can be used successfully for identifying fossil specimens. In particular, we present a case study in which we identify Synodontis cf. schall and Brachysynodontis cf. batensoda in the hominid-bearing sector Toros-Menalla (Late Miocene, northern Chad). We show that spine anatomy can be a powerful tool to recognise catfish species through time and thus to identify historical diversity pattern.  相似文献   

5.
Fossilization in amber is unique in preserving specimens with microscopic fidelity; however, arthropod inclusions are rarely examined beyond the exoskeleton as this requires destructive sampling when traditional techniques are used. We report the first complete, digital 3D, non-destructive reconstruction of the anatomy of an insect fossil, a specimen of †Mengea tertiaria embedded in a 42-Ma Baltic amber. This was made possible using Synchrotron μ-CT. The species belongs to the stem group of the phylogenetically enigmatic and extremely specialized Strepsiptera. Most internal structures of the fossil are preserved, but small parts of the lumen had decayed due to incomplete infiltration of the resin. Data on internal organs provided additional information for resolving phylogenetic relationships. A sister group relationship between †Mengea and all extant lineages of the group was confirmed with characters previously not accessible. The newly gained information also yielded some insights in the biology of †Mengea and the early evolutionary history of Strepsiptera. The technique has a tremendous potential for a more accurate interpretation of diverse fossil arthropods preserved in ambers from 130 Ma to the present.  相似文献   

6.
Sharks are known to have been ammonoid predators, as indicated by analysis of bite marks or coprolite contents. However, body fossil associations attesting to this predator–prey relationship have never been described so far. Here, I report a unique finding from the Late Jurassic of western France: a complete specimen of the Kimmeridgian ammonite Orthaspidoceras bearing one tooth of the hybodont shark Planohybodus. Some possible tooth puncture marks are also observed. This is the first direct evidence of such a trophic link between these two major Mesozoic groups, allowing an accurate identification of both organisms. Although Planohybodus displays a tearing-type dentition generally assumed to have been especially adapted for large unshelled prey, our discovery clearly shows that this shark was also able to attack robust ammonites such as aspidoceratids. The direct evidence presented here provides new insights into the Mesozoic marine ecosystem food webs.  相似文献   

7.
Venom delivery systems occur in a wide range of extant and fossil vertebrates and are primarily based on oral adaptations. Teeth range from unmodified (Komodo dragons) to highly specialized fangs similar to hypodermic needles (protero- and solenoglyphous snakes). Developmental biologists have documented evidence for an infolding pathway of fang evolution, where the groove folds over to create the more derived condition. However, the oldest known members of venomous clades retain the same condition as their extant relatives, resulting in no fossil evidence for the transition. Based on a comparison of previously known specimens with newly discovered teeth from North Carolina, we describe a new species of the Late Triassic archosauriform Uatchitodon and provide detailed analyses that provide evidence for both venom conduction and document a complete structural series from shallow grooves to fully enclosed tubular canals. While known only from teeth, Uatchitodon is highly diagnostic in possessing compound serrations and for having two venom canals on each tooth in the dentition. Further, although not a snake, Uatchitodon sheds light on the evolutionary trajectory of venom delivery systems in amniotes and provide solid evidence for venom conduction in archosaur-line diapsids.  相似文献   

8.
Most living mammal orders, including our own, started their career during the first 10 million years of the Cenozoic, the Age of Mammals. The fossil record documents that early Paleogene adaptive radiations of various clades included tiny species of the size of living shrews. Remains of particularly diminutive limb bones are described from the late Paleocene site of Walbeck, Sachsen-Anhalt. Discovered in 1939, it has remained the only known Paleocene mammal-bearing locality from Germany. The remains are referred to the family Adapisoriculidae, which is considered on the basis of the present postcranial evidence to represent plesiadapiform primates rather than alleged lipotyphlan insectivores as previously proposed. The Walbeck fossils compete with the Early Eocene species Toliapina vinealis from Europe and Picromomys petersonorum from North America for the status of the smallest known primate, fossil and living. Their estimated body weights are as small as 10 g. The limb bones show features related to enhanced flexion at the elbow and hip joint, suggesting arboreal habits and environments such as terminal branches. The diminutive size and tooth morphology suggest feeding on small insects and other invertebrates. Postcranials are important to assess early radiations, such tiny specimens as the present ones are extremely scarce in the fossil record, however.  相似文献   

9.
Lizards are now relatively well known from the Yixian Formation of northeastern China. In this study, we describe a juvenile lizard from a fossil horizon at Daohugou, Inner Mongolia. These beds predate the Yixian Formation, and are probably Late Jurassic or earliest Cretaceous in age. The new specimen thus documents the first lizard material from the Daohugou locality and is the earliest lizard skeleton from China. Comparisons with developmental stages of modern lizards suggest the Daohugou lizard is a hatchling. Although tiny, the specimen is notable in preserving exquisite skin impressions showing the variation in scalation across the body, the shape and position of the cloacal outlet, and details of the manus and pes. These are the earliest recorded lepidosaurian skin traces. In its general proportions and the possession of paired frontals, the small Daohugou lizard resembles both the Yixian taxon Yabeinosaurus tenuis and the questionable Jeholacerta formosa, but it differs from the latter in scalation and, based on other characters, may be distinct from both.  相似文献   

10.
松属(Pinus L.)约113种,是松科现代属中最原始的类群。松属植物种类丰富且研究领域广泛,对其已经积累的资料数据进行系统梳理总结十分必要。本文通过总结国内外松属大化石资料,结合分子系统发育、地质背景和地理隔离事件讨论了其地史分布及植物地理学意义;该属化石在早白垩世至全新世地层中均有记录。化石证据表明松属很可能在早白垩世(之前)起源于西欧地区,从这一起源地通过北大西洋陆桥扩散到北美洲东部,而东亚的类群可能是从北美洲西部经过白令陆桥散布的。在晚白垩世分化出双维管束松亚属Subgenus Pinus L.及单维管束松亚属Subgenus Strobus (D. Don) Lemmon,前者更接近祖先类群。古新世由于全球显著增温以及白垩纪末期大灭绝等地质事件的影响使松属数量急剧减少,在晚始新世至中新世时期随着气温转凉转冷再次分化扩散,中新世达到其发展高峰且分布面貌与现代类群近似。松属多样性时空历史可能和新生代气候变迁及晚新生代构造运动塑造的山地隆升等环境变化紧密相关。  相似文献   

11.
We report new dental remains of Mustelidae from the late middle Miocene of Mae Moh Basin, northern Thailand, improving the poor fossil record of the family in Southeast Asia. Siamogale thailandica is a poorly known mustelid, previously recorded from just a single tooth. Here we present over a hundred new specimens attributable to this species. S. thailandica shows a combination of primitive and convergent features of the dentition that makes its original subfamilial assignment to Lutrinae doubtful. Evidence from the dental morphology suggests that it belongs to a bunodont otter-like mustelid that evolved in convergence with “true” otters (Lutrinae) toward a semi-aquatic way of life. Autapomorphic features such as the height and the position of the m1 metaconid and the shape of the P4 lingual shelf make S. thailandica unique among Mustelidae. The morphology of this species is mostly similar to Mionictis species and Lartetictis dubia, reported in the Miocene of North America and Europe, respectively. These similarities could imply immigration events to Thailand in the early or middle Miocene. Alternately, the lineage leading to Siamogale might have deeper origins from an endemic early Miocene Southeast Asian mustelid.  相似文献   

12.
Birds known from more than isolated skeletal elements are rare in the fossil record, especially from the European Mesozoic. This paucity has hindered interpretations of avian evolution immediately prior to, and in the aftermath of, the Cretaceous-Tertiary (K-T) extinction event. We report on a specimen of a large ornithurine bird (closely related to Ichthyornis) from the uppermost Cretaceous (Maastricht Formation) of Belgium. This is the first record of a bird from these historic strata and the only phylogenetically informative ornithurine to be recovered from the Mesozoic of Europe. Because this new specimen was collected from 40 m below the K-T boundary (approximate age of 65.8 Ma), it is also the youngest non-neornithine (=non-modern) bird known from anywhere in the world.  相似文献   

13.
Herein, we report evidence of an envenomation apparatus (EA) in two different species of extinct “giant” shrews, Beremendia and an indeterminate soricine (Mammalia, Eulipotyphla, Soricidae), documented by very well preserved fossil specimens recovered from two Early Pleistocene cave deposits of the Sierra de Atapuerca in Burgos, Spain. The two soricine taxa from Atapuerca have evolved specialized teeth as EAs, which differ from those of recently reported mammals of the Paleocene age, being more similar to the ones described in the modern Solenodon. This discovery reveals the first instance of shrews possessing what appears to be an EA, an evolutionary adaptation that, in these species, was probably related to an increase in body mass and hunting of a larger-sized prey. The Atapuerca specimens would have a highly specialized EA, one of the very few reported for an extinct or living mammal of any time. In addition to the presence of a gutter-like groove along the medial side of the crown of the lower incisors, these two species also present stout jaws and a modified mandibular symphysis with a conspicuous cavity, which in life would likely contain large amounts of connective tissue. The strong mandible architecture of these large shrews would be, in this way, reinforced by a more immovable symphysis, increasing the bite force exerted over a potential prey. This adaptation, together with the grooved incisors, would ensure a rapid and efficient transmission of the poisonous saliva to paralyze relatively large-sized prey.  相似文献   

14.
Despite significant recent improvements to our understanding of the early evolution of the Order Proboscidea (elephants and their extinct relatives), geographic sampling of the group’s Paleogene fossil record remains strongly biased, with the first ~30 million years of proboscidean evolution documented solely in near-coastal deposits of northern Africa. The considerable morphological disparity that is observable among the late Eocene and early Oligocene proboscideans of northern Africa suggests that other, as yet unsampled, parts of Afro-Arabia might have served as important centers for the early diversification of major proboscidean clades. Here we describe the oldest taxonomically diagnostic remains of a fossil proboscidean from the Arabian Peninsula, a partial mandible of Omanitherium dhofarensis (new genus and species), from near the base of the early Oligocene Shizar Member of the Ashawq Formation, in the Dhofar Governorate of the Sultanate of Oman. The molars and premolars of Omanitherium are morphologically intermediate between those of Arcanotherium and Barytherium from northern Africa, but its specialized lower incisors are unlike those of other known Paleogene proboscideans in being greatly enlarged, high-crowned, conical, and tusk-like. Omanitherium is consistently placed close to late Eocene Barytherium in our phylogenetic analyses, and we place the new genus in the Family Barytheriidae. Some features of Omanitherium, such as tusk-like lower second incisors, the possible loss of the lower central incisors, an enlarged anterior mental foramen, and inferred elongate mandibular symphysis and diminutive P2, suggest a possible phylogenetic link with Deinotheriidae, an extinct family of proboscideans whose origins have long been mysterious.  相似文献   

15.
The pre-Quaternary fossil record of Canis in the Old World is scarce, and the first appearance of this genus in Europe remains an enigma. Amongst the oldest fossils assigned to this genus, there is a natural cast of the brain (endocast) collected in W??e 1, Poland, from Pliocene deposits dated between 3.3 and 4.0 Ma. We reexamined this specimen and found that it differs from the brain of Canis in having its region medial to the coronal sulcus heart-shaped in dorsal view, its region rostral to the presylvian sulcus shorter and less constricted laterally, and its cerebellum less overlapped by the cerebrum and lacking a lateral twist of the posterior vermis. We identified this fossil, as well as another fossil canid endocast from W??e 1, as representing the raccoon dog genus Nyctereutes. The previously reported presence of Canis in W??e 1 is therefore not confirmed. Specifically, both endocasts can be referred to N. donnezani because this is the only species of Nyctereutes that has been recognised in this locality on the basis of craniomandibular and dental fossils. Our study represents a taxonomic application of comparative neuroanatomical and palaeoneurological data, an approach that may become increasingly useful with the growing knowledge of the endocranial morphology of fossil mammals.  相似文献   

16.
Since 2005, excavations at Mare aux Songes, Mauritius, have revealed the presence of a very rich, ∼4,200-year-old fossil bone bed including dodo (Raphus cucullatus) bones and bone fragments. The recently excavated dodo assemblage comprises at least 17 individuals and is characterised by the presence of small and fragile skeletal elements, a dominance of leg elements and an absence of juveniles. The hydrology of the area suggests that dodos, like many other species, were probably lured to Mare aux Songes by the presence of freshwater during times of drought. The most likely scenario for the origin of the fossil deposit is that animals became trapped in the sediment in repeated miring events, which would favour the conservation of hindlimbs. Such a scenario is fully in accordance with the taphonomic characteristics of the bone assemblage.  相似文献   

17.
The only major strategy now being seriously considered for biological mitigation of atmospheric CO2 relies entirely on terrestrial plants. Photosynthetic microbes were the focus of similar consideration in the 1990s. However, two major government-sponsored research programs in Japan and the USA concluded that the requisite technology was not feasible, and those programs were terminated after investing US$117 million and US$25 million, respectively. We report here on the results of a privately funded US$20 million program that has engineered, built, and successfully operated a commercial-scale (2 ha), modular, production system for photosynthetic microbes. The production system couples photobioreactors with open ponds in a two-stage process – a combination that was suggested, but never attempted – and has operated continuously for several years to produce Haematococcus pluvialis. The annually averaged rate of achieved microbial oil production from H. pluvialis is equivalent to <420 GJ ha -1 yr-1, which exceeds the most optimistic estimates of biofuel production from plantations of terrestrial ``energy crops.' The maximum production rate achieved to date is equivalent to 1014 GJ ha-1 yr-1. We present evidence to demonstrate that a rate of 3200 GJ ha-1 yr-1 is feasible using species with known performance characteristics under conditions that prevail in the existing production system. At this rate, it is possible to replace reliance on current fossil fuel usage equivalent to ∼300 EJ yr-1 – and eliminate fossil fuel emissions of CO2 of ∼6.5 GtC yr-1 – using only 7.3% of the surplus arable land projected to be available by 2050. By comparison, most projections of biofuels production from terrestrial energy crops would require in excess of 80% of surplus arable land. Oil production cost is estimated at $84/bbl, assuming no improvements in current technology. We suggest enhancements that could reduce cost to $50/bbl or less.  相似文献   

18.
19.
A giant termite is described and figured from the Late Miocene of the Styrian Basin in southeastern Austria. Gyatermes styriensis gen. n. et sp. n. is represented by a relatively complete forewing, with basal scale. The fossil approximates in size the largest of all termites today and is the largest fossil termite on record. The presence of this species in the Late Miocene fauna of Europe indicates that climatic conditions were appropriate for the persistence of species and colonies requiring relatively stable, warm conditions. The genus is primitive in overall features but shares some similarity with the dampwood termites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号