首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
ABSTRACT: Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two‐component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.  相似文献   

2.
ABSTRACT: Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 1990–94 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could be refined with more-current land use and land cover information and a more accurate estimate of the percentage of basin area planted in corn. Factors related to herbicide yields can be used to predict herbicide yields in other basins within the Chesapeake Bay watershed and to develop an estimate of herbicide loads to Chesapeake Bay.  相似文献   

3.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

4.
ABSTRACT: During the fall of 2000, the occurrence was examined of 16 herbicides and 13 herbicide degradates in samples from 55 wells in shallow aquifers underlying grain producing regions of Illinois. Herbicide compounds with concentrations above 0.05 μg/L were detected in 56 percent of the samples. No concentrations exceeded regulatory drinking water standards. The six most frequently detected compounds were degradates. Water age was an important factor in determining vulnerability of ground water to transport of herbicide compounds. Unconsolidated aquifers, which were indicated to generally contain younger ground water than bedrock aquifers, had a higher occurrence of herbicides (73 percent of samples) than bedrock aquifers (22 percent). Temporal analysis to determine if changes in concentrations of selected herbicides and degradates could be observed over a near decadal period indicated a decrease in detection frequency (25 to 18 percent) between samplings in 1991 and 2000. Over this period, significant differences in concentrations were observed for atrazine (decrease) and total acetochlor (increase). The increase in acetochlor compound concentrations corresponds to an increase in acetochlor use during the study period, while the decrease in atrazine concentrations corresponds to relatively consistent use of atrazine. Changes in frequency of herbicide detection and concentration do not appear related to changes in land use near sampled wells.  相似文献   

5.
Forty‐five flood control reservoirs, authorized in the Watershed Protection and Flood Prevention Act 1954, were installed by United States Department of Agriculture (USDA) between 1969 and 1982 in the Little Washita River Experimental Watershed (LWREW), located in central Oklahoma. Over time, these reservoirs have lost sediment and flood storage capacity due to sedimentation, with rates dependent on upstream land use and climate variability. In this study, sedimentation rates for 12 reservoirs representing three major land use categories within LWREW were measured based on bathymetric surveys that used acoustic profiling system. Physiographic and climate attributes of drainage area of surveyed reservoirs were extracted from publicly available data sources including topographic maps, digital elevation models, USDA Natural Resource Conservation Service soils, and weather station databases. Correlation, principal component analysis, and stepwise regression were utilized to analyze the relationship between normalized reservoir sedimentation rates (ReSRa) and the drainage area characteristics to determine the major variables controlling sedimentation within the LWREW. Percent of drainage area with extreme slopes, saturated hydraulic conductivity, and maximum daily rainfall event recorded in spring explained most of the variability in ReSRa. It was also found that percent reduction in reservoir surface area can be used as a surrogate for estimating ReSRa. The implications of the results are discussed.  相似文献   

6.
ABSTRACT: An index of watershed susceptibility to surface water contamination by herbicides could be used to improve source water assessments for public drinking water supplies, prioritize watershed restoration projects, and direct funding and educational efforts to areas where the greatest environmental benefit can be realized. The goal of this study is to use streamflow and herbicide concentration data to develop and evaluate a method for estimating comparative watershed susceptibility to herbicide loss. United States Geological Survey (USGS) concentration data for five relatively water soluble herbicides (alachlor, atrazine, cyanazine, metolachlor, and simazine) were analyzed for 16 Indiana watersheds. Correlation was assessed between observed herbicide losses and: (1) a herbicide runoff index using GIS‐based land use, soil type, SCS runoff curve number, tillage practice, herbicide use estimates, and combinations of these factors; and (2) predicted herbicide losses from a non‐point source pollution model (NAPRA‐Web, an Internet‐based interface for GLEAMS). The highest adjusted R2value was found between herbicide concentration and the runoff curve number alone, ranging from 0.25 to 0.56. Predictions from the simulation model showed a poorer correlation with observed herbicide loss. This indicates potential for using the runoff curve number as a simple herbicide contamination susceptibility index.  相似文献   

7.
ABSTRACT: Outflow from the Sacramento-San Joaquin river system (Delta outflow) provides about 90 percent of the freshwater flow to San Francisco Bay. Because this river system also supplies most of the water used in California, some believed that annual freshwater flow to the Bay had declined by as much as 50 to 60 percent as water use increased. Consequently, we studied trends in actual Delta outflow and precipitation for the period 1921 to 1986, which is when Delta outflow data are available. We found that there has been no decrease in the annual Delta outflow over this period. In fact, a statistically significant increase in annual Delta outflow of 87 cfa/yr has occurred during the period 1921 to 1986. One reason that Delta outflow has increased is because precipitation has increased faster than water use. Other contributing factors include increased runoff from land use changes, water imports from other areas, and the redistribution of ground water. In addition, statistically significant seasonal trends in Delta outflow were found. Over the period 1921–1986 Delta outflow decreased in April and May and increased from July through November. Changes in other months were not statistically significant. These seasonal changes result primarily from the operation of upstream flood control and water development projects, which store water in the spring and release it in the summer and fall. These seasonal changes are also influenced by a climatic shift that has decreased spring snowmelt runoff and increased late summer through winter precipitation.  相似文献   

8.
ABSTRACT: Long term effects of precipitation and land use/land cover on basin outflow and nonpoint source (NFS) pollutant flux are presented for up to 24 years for a rapidly developing headwater basin and three adjacent headwater basins on the urban fringe of Washington, D.C. Regression models are developed to describe the annual and seasonal responses of basin outflow and IMPS pollutant flux to precipitation, mean impervious surface (IS), and land use. To quantify annual change in mean IS, a variable called delta IS is created as a temporal indicator of urban soil disturbance. Hydrologic models indicate that total annual surface outflow is significantly associated with precipitation and mean IS (r2= 0.65). Seasonal hydrologic models reveal that basin outflow is positively associated with IS during the summer and fall growing season (June to November). NPS pollutant flux models indicate that total and storm total suspended solids (TSS) flux are significantly associated with precipitation and urban soil disturbance in all seasons. Annual NPS total nitrogen flux is significantly associated with both urban and agricultural soil disturbance (r2= 0.51). Seasonal models of phosphorus flux indicate a significant association of total phosphorus flux with urban soil disturbance during the growing season. Total soluble phosphorus (TSP) flux is significantly associated with IS (r2= 0.34) and urban and agricultural soil disturbance (r2= 0.58). In urbanizing Cub Run basin, annual TSP concentrations are significantly associated with IS and cultivated agriculture (r2= 0.51).  相似文献   

9.
ABSTRACT: The predominant mixtures of pesticides found in New York surface waters consist of five principal components. First, herbicides commonly used on corn (atrazine, metolachlor, alachlor, cyanazine) and a herbicide degradate (deethylatrazine) were positively correlated to a corn‐herbicide component, and watersheds with the highest corn‐herbicide component scores were those in which large amounts of row crops are grown. Second, two insecticides (diazinon and carbaryl) and one herbicide (prometon) widely used in urban and residential settings were positively correlated to an urban/residential component. Watersheds with the highest urban/residential component scores were those with large amounts of urban and residential land use. A third component was related to two herbicides (EPTC and cyanazine) used on dry beans and corn, the fourth to an herbicide (simazine) and an insecticide (carbaryl) commonly used in orchards and vineyards, and the fifth to an herbicide (DCPA). Results of this study indicate that this approach can be used to: (1) identify common mixtures of pesticides in surface waters, (2) relate these mixtures to land use and pesticide applications, and (3) indicate regions where these mixtures of pesticides are commonly found.  相似文献   

10.
In order to prevent salinisation of the streams of the Riverine Plain of the Murray-Darling Basin in southern Australia, evaporation basins are used to dispose of saline irrigation drainage water. Local on-farm (individual landholder) and community (shared between multiple landholders) basins are increasingly being used to prevent export of salt outside irrigation districts. There are questions regarding the availability of land suitable for these basins and their impact on the surrounding environment. We describe the use of currently available spatial data to assist in regional planning for the environmentally safe use of these basins. A GIS-based approach was developed using suitability criteria expected to minimise the risk of off-site effects of basin leakage. The criteria were proximity to surface water features, urban areas and infrastructure, water table depth and salinity, and soil hydraulic conductivity. The approach was applied to all of the major irrigation districts at 1:250,000, the scale at which data are available over the entire Riverine Plain. Confidence in well-defined parameters such as proximity to infrastructure, urban areas and surface water features was higher than for those involving interpolated point data such as water table depth, salinity, and hydraulic conductivity. Most critically, hydraulic conductivity, the most important factor for basin leakage, was found to be unreliable at this scale. Use of higher resolution data (up to 1:100,000) available for two of the irrigation districts improved confidence in both water table depth and salinity but not in hydraulic conductivity. Despite these limitations, it was found that: (i) on-farm basins can only be used on an opportunistic basis in the eastern irrigation districts, but can be widely used in the western districts; (ii) community basins can be used anywhere there is suitable land; and (iii) the results raise serious questions as to whether there is enough suitable land in the eastern districts to dispose of all of the drainage water that is produced.  相似文献   

11.
ABSTRACT: Several factors affect the occurrence and transport of pesticides in surface waters of the 29,400 km2 White River Basin in Indiana. A relationship was found between pesticide use and the average annual concentration of that pesticide in the White River, although this relationship varies for different classes of pesticides. About one percent of the mass applied of each of the commonly used agricultural herbicides was transported from the basin via the White River. Peak pesticide concentrations were typically highest in late spring or early summer and were associated with periods of runoff following application. Concentrations of diazinon were higher in an urban basin than in two agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas. Concentrations of atrazine, a corn herbicide widely used in the White River Basin, were higher in an agricultural basin with permeable, well‐drained soils, than in an agricultural basin with less permeable, more poorly drained soils. Although use of butylate and cyanazine was comparable in the White River Basin between 1992 and 1994, concentrations in the White River of butylate, which is incorporated into soil, were substantially less than for cyanazine, which is typically applied to the soil surface.  相似文献   

12.
ABSTRACT: Regression models were developed for estimating stream concentrations of the herbicides alachlor, atrazine, cyanazine, metolachior, and trilluralin from use‐intensity data and watershed characteristics. Concentrations were determined from samples collected from 45 streams throughout the United States during 1993 to 1995 as part of the U.S. Geological Survey's National Water‐Quality Assessment (NAWQA). Separate regression models were developed for each of six percentiles (10th, 25th, 50th, 75th, 90th, 95th) of the annual distribution of stream concentrations and for the annual time‐weighted mean concentration. Estimates for the individual percentiles can be combined to provide an estimate of the annual distribution of concentrations for a given stream. Agricultural use of the herbicide in the watershed was a significant predictor in nearly all of the models. Several hydrologic and soil parameters also were useful in explaining the variability in concentrations of herbicides among the streams. Most of the regression models developed for estimation of concentration percentiles and annual mean concentrations accounted for 50 percent to 90 percent of the variability among streams. Predicted concentrations were nearly always within an order of magnitude of the measured concentrations for the model‐development streams, and predicted concentration distributions reasonably matched the actual distributions in most cases. Results from application of the models to streams not included in the model development data set are encouraging, but further validation of the regression approach described in this paper is needed.  相似文献   

13.
Reservoir outflow is an important variable for understanding hydrological processes and water resource management. Natural streamflow variation, in addition to the streamflow regulation provided by dams and reservoirs, can make streamflow difficult to understand and predict. This makes them a challenge to accurately simulate hydrologic processes at a daily scale. In this study, three Machine Learning (ML) algorithms, Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN), were examined and compared to model reservoir outflow. Past, current, and future hydrologic and meteorological data were used as model inputs, and the outflow of next day was used as prediction. Simulation results demonstrated that all three models can reasonably simulate reservoir outflow. For Carlyle Lake, the coefficient of determination and Nash–Sutcliffe efficiency were each close to one for the three models. The coefficient of determination, relative mean bias, and root mean square error indicated that the SVM performed better than the RF and ANN, but the SVM output displayed a larger relative mean bias than that from RF and ANN. For Lake Shelbyville, the ANN model performed better than RF and SVM when considering the coefficient of determination, Nash–Sutcliffe efficiency, relative mean bias, and root mean square error. The study results demonstrate that the three ML algorithms (RF, SVM, and ANN) are all promising tools for simulating reservoir outflow. Both the accuracy and efficacy of the three ML algorithms are considered to support practitioners in planning reservoir management.  相似文献   

14.
We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments.  相似文献   

15.
ABSTRACT. The objective of this investigation was to determine the selectivity of withdrawal which is possible in southwestern reservoirs. Two stratified flow solutions were examined to test their applicability under field conditions. Although both appeared capable of accurate prediction of the outflow velocity profile, the Bohan-Grace solution, which required less input data, was utilized to predict the chemical constituents of single and simultaneous releases from several southwestern impoundments. Prediction of outflow water quality was within fifteen percent for southwestern reservoirs as shallow as fifty-five feet. The withdrawal layer thickness for the subject Texas impoundments included the entire hypolimnion or epilmnion depending on outlet location. The sensitivity of the velocity profile to seasonal changes, reservoir discharge rate and withdrawal port dimensions also is illustrated.  相似文献   

16.
Understanding effects of flow alteration on stream biota is essential to developing ecologically sustainable water supply strategies. We evaluated effects of altering flows via surface water withdrawals and instream reservoirs on stream fish assemblages, and compared effects with other hypothesized drivers of species richness and assemblage composition. We sampled fishes during three years in 28 streams used for municipal water supply in the Piedmont region of Georgia, U.S.A. Study sites had permitted average withdrawal rates that ranged from < 0.05 to > 13 times the stream’s seven-day, ten-year recurrence low flow (7Q10), and were located directly downstream either from a water supply reservoir or from a withdrawal taken from an unimpounded stream. Ordination analysis of catch data showed a shift in assemblage composition at reservoir sites corresponding to dominance by habitat generalist species. Richness of fluvial specialists averaged about 3 fewer species downstream from reservoirs, and also declined as permitted withdrawal rate increased above about 0.5 to one 7Q10-equivalent of water. Reservoir presence and withdrawal rate, along with drainage area, accounted for 70% of the among-site variance in fluvial specialist richness and were better predictor variables than percent of the catchment in urban land use or average streambed sediment size. Increasing withdrawal rate also increased the odds that a site’s Index of Biotic Integrity score fell below a regulatory threshold indicating biological impairment. Estimates of reservoir and withdrawal effects on stream biota could be used in predictive landscape models to support adaptive water supply planning intended to meet societal needs while conserving biological resources.  相似文献   

17.
A study of the desorption of atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine) and linuron [1-methoxy-1-methyl-3-(3,4-dichlorophenyl)urea] adsorbed on soils with different organic matter (OM) and clay contents was conducted in water and in the presence of the non-ionic surfactant Triton X-100 at different concentrations. The aim was to gain insight into soil characteristics in surfactant-enhanced desorption of herbicides from soils. Adsorption and desorption isotherms in water, in all Triton X-100 solutions for atrazine, and in solutions of 0.75 times the critical micelle concentration (cmc) and 1.50cmc for linuron fit the Freundlich equation. All desorption isotherms showed hysteresis. Hysteresis coefficients decreased for linuron and increased or decreased for atrazine in Triton X-100 solutions. These variations were dependent on surfactant concentration and soil OM and clay contents. In the soil-water-surfactant system desorption of linuron from all soils was always greater than in the soil-water system but for atrazine this only occurred at concentrations higher than 50cmc. For the highest Triton X-100 concentration (100cmc), the desorption of the most hydrophobic herbicide (linuron) was increased more than 18-fold with respect to water in soil with an OM content of 10.3% while the atrazine desorption was increased 3-fold. The effect of Triton X-100 on the desorption of both herbicides was very low in soil with a high clay content. The results indicate the potential use of Triton X-100 to facilitate the desorption of these herbicides from soil to the water-surfactant system. They also contribute to better understanding of the interactions of different molecules and surfaces in the complex soil-herbicide-water surfactant system.  相似文献   

18.
ABSTRACT: A computerized geographic information system (GIS) was created in support of data requirements by a hydrologic model designed to predict the runoff hydrograph from ungaged basins. Some geomorphologic characteristics (i.e., channel lengths) were manually measured from topographic maps, while other parameters such as drainage area and number of channels of a specified order, land use, and soil type were digitized and manipulated through use of the GIS. The model required the generation of an integrated Soil Conservation Service (SCS) curve number for the entire basin. To this end, soil associations and land use (generated from analysis of Landsat satellite data) were merged in the GIS to acquire a map representing SCS runoff curve numbers. The volume of runoff obtained from the Watershed Hydrology Simulation (WAHS) Model using this map was compared to the volume computed by hydrograph separation and found to be accurate within 19 percent error. To quantify the effect of changing land use on basin hydrology, the GIS was used to vary percentages from the drainage area from forest to bare soil. By changing the basin runoff curve numbers, significant changes in peak discharge were noted; however, the time to peak discharge remained essentially independent of change in area of land use. The GIS capability eliminated many of the more traditional manual phases of data input arid manipulation, thereby allowing researchers to concentrate on the development and calibration of the model and the interpretation of presumably more accurate results.  相似文献   

19.
ABSTRACT: The Everglades Agricultural Area (EAA) covers 2,850 km2 in area and is characterized by high water table and organic soil. The area is actively irrigated and drained as a function of weather conditions and crop status. Anthropogenic activities in the basin have resulted in nutrient-enriched drainage water that is discharged to Lake Okeechobee and the Everglades ecosystem. Water quantity and quality issues of the basin have become of increasing interest at local, state, and federal levels, so legislative and regulatory measures have been taken to improve water quality in discharges from the basin. In this study, simulation of hydrologic conditions and soil moisture were conducted using 100 years of daily synthetic rainfall data. From the simulations, the statistical distribution of half-month drainage discharge and supplemental water use in the basin was developed. The mean annual drainage/runoff was 49 cm, the mean supplemental water was 30 cm, and the mean annual a real rainfall was 122 cm. On the average, drainage exceeded supplemental water use in the months of June to September while from December to March drainage and supplemental water use were equivalent. Supplemental water use exceeded drainage in the months of October, November, April, and May. High drainage occurred in June and September; smallest drainage was in February. On the average, the highest supplemental water use occurred in May and November. The 10-year return period of annual drainage during wet and dry cycles were 60 cm and 38 cm per year, respectively. The semi-monthly drainage coefficient of variation (cv) is above 100 percent for the period from the second half of October to end of April. The cv is lower than 100 percent for the remaining season (wet season). The purpose of this paper is to present the magnitude, temporal, and frequency distribution of drainage runoff generation and supplemental water use in the EAA basin. Information on statistics of drainage will contribute to the optimization of the design and operation of drainage water treatment systems.  相似文献   

20.
ABSTRACT: Three investigations are underway, as part of the U.S. Geological Survey's National Water‐Quality Assessment (NAWQA) Program, to study the relation between varying levels of urban intensity in drainage basins and in‐stream water quality, measured by physical, chemical, and biological factors. These studies are being conducted in the vicinities of Boston (Massachusetts), Salt Lake City (Utah), and Birmingham (Alabama), areas where rapid urbanization is occurring. For each study, water quality will be sampled in approximately 30 drainage basins that represent a gradient of urban intensity. This paper focuses on the methods used to characterize and select the basins used in the studies. It presents a methodology for limiting the variability of natural landscape characteristics in the potential study drainage basins and for ranking the magnitude of human influence, or urbanization, based on land cover, infrastructure, and socioeconomic data in potential study basins. Basin characterization efforts associated with the Boston study are described for illustrative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号