首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biosorption studies of Cr(VI) were carried out using waste weed, Salvinia cucullata. Various adsorption parameters were studied, such as agitation speed, contact time, pH, particle size, and concentrations of adsorbent and adsorbate. The equilibrium was achieved in 12 h. A lower pH favoured adsorption of Cr(VI). The kinetics followed pseudo-second-order rate equations. The adsorption isotherm obeyed both the Langmuir and Freundlich models. The calculated activation energy (1.1 kJ mol-1) suggested that the adsorption followed a diffusion-controlled mechanism. Various thermodynamic parameters such as Δ G°, Δ H°, and Δ S° were also calculated. The positive values of enthalpy indicated the endothermic nature of the reaction, and Δ S° showed the increasing randomness at the solid liquid interface of Cr(VI) on the adsorbent, which revealed the ease of adsorption reaction. These thermo-dynamic parameters showed the spontaneity of the reaction. The maximum adsorption of uptake (232 mg g-1) compared well with reported values of similar adsorbents. The rate-determining step was observed to follow an intra-particle diffusion model.  相似文献   

2.
《Chemistry and Ecology》2007,23(5):409-425
The use of a new sorbent developed from the husk of pomegranate, a famous fruit in Egypt, for the removal of toxic chromium from aqueous solution has been investigated. The batch experiment was conducted to determine the adsorption capacity of the pomegranate husk. The effects of initial metal concentration (25 and 50 mg l-1), pH, contact time, and sorbent concentration (2-6 g l-1) have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increased as the pH decreased, and the optimum pH value was pH 1.0. Adsorption equilibrium and kinetics were studied with different sorbent and metal concentrations. The adsorption process was fast, and equilibrium was reached within 3 h. The maximum removal was 100% for 25 mg l-1 of Cr6+ concentration on 5 g l-1 pomegranate husk concentration, and the maximum adsorption capacity was 10.59 mg g-1. The kinetic data were analysed using various kinetic models—pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion equations—and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, and Generalized isotherm equations. The Elovich and pseudo-second-order equations provided the greatest accuracy for the kinetic data, while Langmuir and Generalized isotherm models were the closest fit for the equilibrium data. The activation energy of sorption has also been evaluated as 0.236 and 0.707 kJ mol-1 for 25 and 50 mg l-1 chromium concentration, respectively.  相似文献   

3.
The chromium(VI) biosorption onto guava seeds, as an alternative method for Cr6+ removal from aqueous solutions, was investigated. The parameters affecting kinetics and equilibrium of Cr6+ adsorption onto guava seeds were studied. An external mass-transfer diffusion coefficient k and intra-particle diffusion coefficient ki were determined to measure the rate-limiting step of adsorption. A single external mass-transfer diffusion model and intra-particle diffusion models were used. The effects of initial pH, sorbent mass, and initial Cr6+ concentrations on mass-transfer coefficients were investigated. The external mass-transfer coefficient has an average value of 7.2×10-3 cm s-1, while the intra-particle mass-transfer diffusion coefficient was 0.34 mg g-1 min-0.5. This indicates that external diffusion to the guava seeds surface and intra-particle diffusion are both involved in the sorption process. The isotherm equilibrium data were well fitted by the Langmuir and Freundlich models with an average correlation coefficient R2=0.98. The maximum removal of Cr6+ was obtained at pH 1 (about 100% for adsorbent dose of 15 g l-1 and 25 mg l-1 initial concentration of Cr6+). The results indicated that the guava seeds exhibit acceptable sorption capacity.  相似文献   

4.
The internal nutrient load from bottom sediment to the water column of a Louisiana Barataria Basin lake (Lake Cataouatche) receiving diverted Mississippi River water was determined. Dissolved reactive phosphorus (DRP), ammonium (NH4-N) and nitrate (NO3-N) flux from sediment to water column were measured. The DRP flux averaged-0.22 mg m-2 d-1 under aerobic water column conditions, as compared with that 3.29 mg m-2 d-1 under anaerobic conditions. The average NH4-N released under anaerobic conditions (1.42 mg m-2 d-1) was significantly greater than rates under aerobic conditions (-0.02 mg m-2 d-1), indicating a strong relationship between nutrient flux and oxygen availability in the water column. The average NO3-N flux was 2.13 mg m-2 d-1 under aerobic conditions as compared with-0.24 mg m-2 d-1 under anaerobic conditions in the sediment-water column. When the water column maintained under anaerobic conditions was switched to aerobic conditions, the DRP, NH4-N, and NO3-N concentrations in overlying water decreased rapidly over a short period of time. The mean annual internal DRP and NH4-N load from the sediment to the overlying water was estimated to be 69.26 and 29.9 tonnes (Mg) yr-1 respectively, which represents a significant portion of the total nutrient load to the Lake. Results demonstrate that the internal flux of nutrients from sediments can contribute a significant portion of the total nutrient load to the water column and should be considered in decisions on impact of nutrient in diverted Mississippi River on water quality of Barataria Basin.  相似文献   

5.
• A high-efficiency N-doped porous carbon adsorbent for Cr(VI) was synthesized. • The maximum adsorption capacity of Cr(VI) reached up to 285.71 mg/g at 318K. • The potential mechanism for Cr(VI) adsorption by NHPC was put forward. • DFT analyzed the adsorption energy and interaction between NHPC and Cr(VI). To develop highly effective adsorbents for chromium removal, a nitrogen-doped biomass-derived carbon (NHPC) was synthesized via direct carbonation of loofah sponge followed by alkali activation and doping modification. NHPC possessed a hierarchical micro-/mesoporous lamellar structure with nitrogen-containing functional groups (1.33 at%), specific surface area (1792.47 m2/g), and pore volume (1.18 cm3/g). NHPC exhibited a higher Cr(VI) adsorption affinity than the HPC (without nitrogen doping) or the pristine loofah sponge carbon (LSC) did. The influence of process parameters, including pH, dosage, time, temperature, and Cr(VI) concentration, on Cr(VI) adsorption by NHPC were evaluated. The Cr(VI) adsorption kinetics matched with the pseudo-second-order model (R2≥0.9983). The Cr(VI) adsorption isotherm was fitted with the Langmuir isotherm model, which indicated the maximum Cr(VI) adsorption capacities: 227.27, 238.10, and 285.71 mg/g at 298K, 308K, and 318K, respectively. The model analysis also indicated that adsorption of Cr(VI) on NHPC was a spontaneous, endothermal, and entropy-increasing process. The Cr(VI) adsorption process potentially involved mixed reductive and adsorbed mechanism. Furthermore, computational chemistry calculations revealed that the adsorption energy between NHPC and Cr(VI) (−0.84 eV) was lower than that of HPC (−0.51 eV), suggesting that nitrogen doping could greatly enhance the interaction between NHPC and Cr(VI).  相似文献   

6.
The adsorption of chromium(VI) onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of contact time, adsorbent dose, Cr(VI) concentration, pH and temperature were investigated. The two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q 0) was found to be 120.5?mg Cr(VI) per g of the adsorbent. The adsorption followed the second-order kinetics and was found to be maximum at pH 2.0. The pH effect and the desorption studies showed that ion exchange mechanism might be involved in the adsorption process. The effects of foreign ions such as chloride, sulphate, phosphate, selenite, molybdate, nitrate and perchlorate on the removal of Cr(VI) have been investigated. The removal of Cr(VI) from synthetic ground water was also tested. The results show that ZnCl2 activated coir pith carbon is effective for the removal of Cr(VI) from water.  相似文献   

7.
The area between the island of Capri and Punta Campanella was investigated from June to November 2003. Punta Campanella separates the Gulf of Naples from the Gulf of Salerno and has been declared a marine protected area in 1997. The study area has a particular interesting topography, due to the presence of a sill situated at a depth of 80 m. Samples were collected by instruments carried on a mooring array (sediment trap, current meters, and temperature sensors) and by CTD cast (along transects perpendicular to the coast). We observed most important fluctuations in the temperature spectra (corresponding to the inertial oscillations period), in August. The total mass flux was 585.67 mg m-2 d-1 in the summer, while in early autumn the flux exhibited values one order of magnitude higher than in summer (1539.97 mg m-2 d-1). The main focus of this study was to understand the influence of the internal waves on the particle flux. During the autumn, in the particle flux collected, there is a strong resuspension component, and the observation that the enhanced inertial oscillations and increased sedimentation occur at the same time allows us to presume that the inertial oscillations could be one of the reasons for the resuspension process during the sampling period.  相似文献   

8.
• PANI/Ti(OH)n(4n)+ exhibited excellent adsorption capacity and reusability. • Adsorption sites of Cr(VI) were hydroxyl, amino/imino group and benzene rings. • Sb(V) was adsorbed mainly through hydrogen bonds and Ti-O-Sb. • The formation of Cr-O-Sb in dual system demonstrated the synergistic adsorption. • PANI/TiO2 was a potential widely-applied adsorbent and worth further exploring. Removal of chromium (Cr) and antimony (Sb) from aquatic environments is crucial due to their bioaccumulation, high mobility and strong toxicity. In this work, a composite adsorbent consisting of Ti(OH)n(4n)+ and polyaniline (PANI) was designed and successfully synthesized by a simple and eco-friendly method for the uptake of Cr(VI) and Sb(V). The synthetic PANI/TiO2 composites exhibited excellent adsorption capacities for Cr(VI) and Sb(V) (394.43 mg/g for Cr(VI) and 48.54 mg/g for Sb(V)), wide pH applicability and remarkable reusability. The adsorption of Cr(VI) oxyanions mainly involved electrostatic attraction, hydrogen bonding and anion-π interactions. Based on X-ray photoelectron spectroscopy and FT-IR analysis, the adsorption sites were shown to be hydroxyl groups, amino/imino groups and benzene rings. Sb(V) was adsorbed mainly through hydrogen bonds and surface complexation to form Ti-O-Sb complexes. The formation of Cr-O-Sb in the dual system demonstrated the synergistic adsorption of Cr(VI) and Sb(V). More importantly, because of the different adsorption sites, the adsorption of Cr(VI) and Sb(V) occurred independently and was enhanced to some extent in the dual system. The results suggested that PANI/TiO2 is a promising prospect for practical wastewater treatment in the removal of Cr(VI) and Sb(V) from wastewater owing to its availability, wide applicability and great reusability.  相似文献   

9.
• Functional groups of AM and EDTA in composite increased removal of Cr(VI) and CR. • Removal process reached equilibrium within 30 min and was minimally affected by pH. • Elimination of Cr(VI) was promoted by coexisting CR. • Adsorption process of CR was less influenced by the presence of Cr(VI). • Mechanisms were electrostatic attraction, surface complexation and anion exchange. We prepared ethylenediaminetetraacetic acid (EDTA)-intercalated MgAl-layered double hydroxide (LDH-EDTA), then grafted acrylamide (AM) to the LDH-EDTA by a cross-linking method to yield a LDH-EDTA-AM composite; we then evaluated its adsorptive ability for Congo red (CR) and hexavalent chromium (Cr(VI)) in single and binary adsorption systems. The adsorption process on LDH-EDTA-AM for CR and Cr(VI) achieved equilibrium quickly, and the removal efficiencies were minimally affected by initial pH. The maximum uptake quantities of CR and Cr(VI) on LDH-EDTA-AM were 632.9 and 48.47 mg/g, respectively. In mixed systems, chromate removal was stimulated by the presence of CR, while the adsorption efficiency of CR was almost not influenced by coexisting Cr(VI). The mechanisms involved electrostatic attraction, surface complexation, and anion exchange for the adsorption of both hazardous pollutants. In the Cr(VI) adsorption process, reduction also took place. The removal efficiencies in real contaminated water were all higher than those in the laboratory solutions.  相似文献   

10.
The reduction of hexavalent chromium by scrap iron was investigated in continuous long-term fixed bed system. The effects of pH, empty bed contact time (EBCT), and initial Cr(VI) concentration on Cr(VI) reduction were studied. The results showed that the pH, EBCT, and initial Cr(VI) concentration significantly affected the reduction capacity of scrap iron. The reduction capacity of scrap iron were 4.56, 1.51, and 0.57 mg Cr(VI)·g-1 Fe0 at pH 3, 5, and 7 (initial Cr(VI) concentration 4 mg·L-1, EBCT 2 min, and temperature 25°C), 0.51, 1.51, and 2.85 mg Cr(VI)·g-1 Fe0 at EBCTs of 0.5, 2.0, and 6.0 min (initial Cr(VI) concentration 4 mg·L-1, pH 5, and temperature 25°C), and 2.99, 1.51, and 1.01 mg Cr(VI)·g-1 Fe0 at influent concentrations of 1, 4, and 8 mg·L-1 (EBCT 2 min, pH 5, and temperature 25°C), respectively. Fe(total) concentration in the column effluent continuously decreased in time, due to a decrease in time of the iron corrosion rate. The fixed bed reactor can be readily used for the treatment of drinking water containing low amounts of Cr(VI) ions, although the hardness and humic acid in water may shorten the lifetime of the reactor, the reduction capacity of scrap iron still achieved 1.98 mg Cr6+·g-1 Fe. Scanning electron microscope equipped with energy dispersion spectrometer and X-ray diffraction were conducted to examine the surface species of the scrap iron before and after its use. In addition to iron oxides and hydroxide species, iron-chromium complex was also observed on the reacted scrap iron.  相似文献   

11.
以乙二胺盐酸盐(EDH)为改性剂改性氧化石墨烯(GO),水热法制备氨基化氧化石墨烯(Amino-functionalized;graphene;oxide,AGO).SEM、XRD、FTIR和Zeta电位表征分析发现,AGO表面含有羟基、羧基及氨基基团,Zeta电位为pH=10.14.以水中低浓度六价铬Cr(Ⅵ)为污染物,探讨了乙二胺盐酸盐(EDH)用量、pH、AGO用量、Cr(Ⅵ)初始浓度以及常见干扰离子对AGO吸附Cr(Ⅵ)影响.结果表明,在pH=6.0、7-AGO用量为0.8;mg·L-1和Cr(Ⅵ)初始浓度为2.0;mg·L-1,7-AGO对Cr(Ⅵ)去除率可达95.1%;SO42-会明显抑制AGO对Cr(Ⅵ)的吸附.AGO对Cr(Ⅵ)的吸附过程符合二级动力学模型,吸附机制主要为静电作用.  相似文献   

12.
• LDHs and MMOs was synthesized by ultrasound-assisted one-step co-precipitation. • MMOs performs the best for Cr(VI) and E. coliNDM-1 simultaneous removal. • Possible antibacterial pathways of Cr-MMOs were proposed. Herein we provide a novel high-efficiency nanocomposite for bacterial capture based on mixed metal oxides (MMOs) with deleterious chromium properties. With both the layer structure of layered double hydroxides (LDHs) and the magnetic properties of Fe, MMOs enrich the location of ionic forms on the surface, providing a good carrier for adsorption of the heavy metal Cr(VI). The capacity for adsorption of Cr(VI) by MMOs can be as high as 98.80 mg/g. The prepared Cr(VI)-MMOs achieved extremely expeditious location of gram-negative antibiotic-resistant E. coliNDM-1 by identifying lipid bilayers. Cr-MMOs with a Cr loading of 19.70 mg/g had the best bactericidal effect, and the concentration of E. coliNDM-1 was decreased from ~108 to ~103 CFU/mL after 30 min of reaction. The binding of nitrogen and phosphorus hydrophilic groups to chromate generated realistic models for density functional theory (DFT) calculations. The specific selectivity of MMOs toward bacterial cells was improved by taking Cr(VI) as a transferable medium, thereby enhancing the antibacterial activity of Cr-MMOs. Under the combined action of chemical and physical reactions, Cr(VI)-MMOs achieved high capacity for inactivation of bacteria. Moreover, the metallic elements ratio in Cr-MMOs remained stable in their initial valence states after inactivation. This guaranteed high removal efficiency for both heavy metals and bacteria, allowing recycling of the adsorbent in practical applications.  相似文献   

13.
Surface waters were collected in the River Adour estuary (south-western France) during different sampling periods from 1998 to 2001 in order to investigate the phase distribution and speciation of methylmercury (MeHg+). Although a high variability is observed, significant higher average concentrations of total MeHg+ (dissolved and particulate) are measured during the warm seasons, at 4.40±8.18 pM and 3.90±1.87 pM for July 1998 and September 1999, compared with the winter seasons, with concentrations at 0.99±2.85 pM and 1.00±1.75 pM for February 1998 and February 2001, respectively (one-tailed t-test, P=0.01). The seasonal variations are explained with enhanced bacterial activity during summer and sedimentation/resuspension phenomena. Additionally, signi-ficant longitudinal variations of the MeHg+ concentrations are observed. The highest levels in both dissolved and particulate fractions are found within the downstream urban estuarine area. This can be explained by the high methylation potential of the sediments, but direct anthropogenic inputs of MeHg+ from specific discharge points cannot be neglected. Biogeochemical factors like phytoplankton biomass and salinity also show a relationship with MeHg+ partitioning in the surface waters of the Adour estuary.  相似文献   

14.
Biosorption of colours is an important technology for treatment of different types of industrial wastewaters containing dyes. The objective of this study was to convert green alga Ulva lactuca to dye adsorbents for wastewater treatment. The importance of commonly available green alga Ulva lactuca was investigated as viable biomaterials for the biological treatment of synthetic basic blue 9 (5-ch1oro-N,N,N',N'-tetramethyl-5λ4-phenothiazine-3,7-diamine) effluents. The results obtained from the batch experiments revealed the ability of the green algae to remove the basic blue 9, and this was dependent on the dye concentration, pH, and algal biomass. We investigated the equilibrium and kinetics of adsorption, and the Langmuir and Freundlich equations were used to fit the equilibrium isotherm. The adsorption isotherm of basic blue 9 followed both the Langmuir and Freundlich models with a correlation coefficient of ∼0.96-0.99, and the adsorption kinetics followed the pseudo-second-order model (R2=1.0). The maximum adsorption capacity was about 40.2 mg of dye per gram of dry green algae at pH 10, 25 g l-1 dye and 2.5 g l-1 alga concentrations. This study demonstrated that the green algae could be used as an effective biosorbent for the treatment of dye-containing wastewater streams.  相似文献   

15.
The adsorption of some heavy metals onto the walls of harvested, washed, and dried non-living biomass cells of different Pseudomonas strains was studied at optimum experimental conditions using a simplified single component system. The Langmuir adsorption model was found to be a suitable approach to describe the system via multi-step processes. Isotherms measured at 30.0°C and pH 5.5 with [M]total = 10-100 mM for tight, reversible Cr6+(aq), Ni2+(aq), Cu2+(aq) and Cd2+(aq) binding by the cell walls of the investigated biomass fit the Langmuir model and give the pH-independent stoichiometric site capacities νi and equilibrium constants Ki for metal binding at specific biomass sites i = A, B, C, and D. Tight binding sites A, B, and D of the non-living biomass are occupied by CrVI, sites A and C by NiII, sites A and D by CdII, and only site B by CuII. It is concluded that νi is a stoichiometric parameter that is independent of the magnitude of Ki for binding site i and that the studied heavy metals selectively and tightly bind at different biomass sites.  相似文献   

16.
Sorghastrum Nutans L. Nash is used as an adsorbent for the removal of Cr(VI) from wastewater. Adsorption coupled reduction i.e. indirect reduction is the mechanism of Cr(VI) removal by the biomaterial. The adsorbent surface became highly positively charged at lower pH, adsorption rate of Cr(VI) is faster and reduction reaction also accelerates at lower pH since the binding of negatively charged Cr(VI) ion species to the cationic groups is enhanced and protons take part in this reaction. The adsorbent is characterised by using XRD, FTIR, SEM and EDAX analysis. OH bending, CN stretching/bending and NH stretching play a major role in Chromium adsorption. Experimental values follow pseudo-second order reaction and Langmuir adsorption isotherm. Surface diffusion is the rate controlling mechanism for the process. The maximum percentage of Cr(VI) removal obtained is 75.5% with 7?g/L dosage at pH 1.3 and adsorbate concentration was 100?mg/L. From the normal probability, residual, contour, 3D surface, main effect and interaction plot along with t-test, ANOVA, and F-test, it is observed that pH has the most significant effect on the percentage removal followed by adsorbent dosage and time. The adsorbate concentration has the least effects and interaction effects are found to be significant.  相似文献   

17.
● Titanium-based flow-through electrode achieved high Cr(VI) reduction efficiency. ● Flow-through pattern enhanced the mass transfer and reduced cathodic polarization. ● BPNN predicted the optimal electroreduction conditions of flow-through cell. Flow-through electrodes have been demonstrated to be effective for electroreduction of Cr(VI), but shortcomings are tedious preparation and short lifetimes. Herein, porous titanium available in the market was studied as a flow-through electrode for Cr(VI) electroreduction. In addition, the intelligent prediction of electrolytic performance based on a back propagation neural network (BPNN) was developed. Voltametric studies revealed that Cr(VI) electroreduction was a diffusion-controlled process. Use of the flow-through mode achieved a high limiting diffusion current as a result of enhanced mass transfer and favorable kinetics. Electroreduction of Cr(VI) in the flow-through system was 1.95 times higher than in a parallel-plate electrode system. When the influent (initial pH 2.0 and 106 mg/L Cr(VI)) was treated at 5.0 V and a flux of 51 L/(h·m2), a reduction efficiency of ~99.9% was obtained without cyclic electrolysis process. Sulfate served as the supporting electrolyte and pH regulator, as reactive CrSO72− species were formed as a result of feeding HSO4. Cr(III) was confirmed as the final product due to the sequential three-electron transport or disproportionation of the intermediate. The developed BPNN model achieved good prediction accuracy with respect to Cr(VI) electroreduction with a high correlation coefficient (R2 = 0.943). Additionally, the electroreduction efficiencies for various operating inputs were predicted based on the BPNN model, which demonstrates the evolutionary role of intelligent systems in future electrochemical technologies.  相似文献   

18.
This paper deals with the water chemistry and dissolved nutrient flux of two small mountainous and heavily dammed rivers—Periyar and Chalakudy—of Kerala on the south-west coast of India. The lower reaches of these rivers are affected by sea-water ingression from the Arabian Sea during the non-monsoon season. Human interference through agriculture, urbanization, and industrialization in the lower and middle stretches of the river basins induces marked concentration variations in the hydro-chemical parameters. Except for N & P, all other chemical constituents exhibit high values during the non-monsoon season. Industrial contaminants in specific locations of the Periyar river reduce the pH to lower levels. Nutrients in the two rivers reveal marked seasonal and regional concentration variations. During the monsoon season, dissolved inorganic nitrogen (DIN) predominates over dissolved organic nitrogen (DON), but the reverse trend is observed during the non-monsoon season. The Periyar river shows higher average concentrations of DIN (monsoon 801 μg l-1 and non-monsoon 292 μg l-1) than Chalakudy river (monsoon 478 μg l-1 and non-monsoon 130 μg l-1). Dissolved inorganic phosphorus (DIP) has lower average values in the monsoon season (Periyar river, 38 μg l-1; Chalakudy river, 42 μg l-1) than dissolved organic phosphorus (DOP) values (Periyar river, 107 μg l-1; Chalakudy, 62 μg l-1). The rivers show a marked difference in nutrient flux due to its difference in water discharge/basin characteristics and point/non-point sources of contaminants. The flux rates of DIN, DIP, and DOP during the monsoon are higher than during the non-monsoon season, while those of dissolved silicon (DSi), dissolved Fe (DFe), and DON are lower. On average, the Periyar river discharges 4953 t y-1 of DIN and 1626 t y-1 of DON to the coastal waters, and the corres-ponding values of the Chalakudy river are 772 t y-1 and 596 t y-1. The Periyar and Chalakudy rivers discharge 245 t y-1 and 70.8 t y-1 of DIP, respectively. The total flux of DOP is considerably higher (Periyar river 703 t y-1 and Chalakudy river 101 t y-1). The discharge of DSi into the Periyar river (40 193 t y-1) is nearly five times higher than that in the Chalakudy river (8275 t y-1). The discharges of DFe through the Periyar and Chalakudy rivers are 257 t y-1 and 36.7 t y-1, respectively. To sum up, this study addresses the water quality and nutrient flux of two tropical rivers and discusses the impact of urbanization and industrialization on river-water quality.  相似文献   

19.
• Pd nanoparticles could be reduced and supported by activated sludge microbes. • The effect of biomass on Pd adsorption by microbes is greater than Pd reduction. • More biomass reduces Pd particle size, which is more dispersed on the cell surface. • When the biomass/Pd add to 6, the catalytic reduction rate of Cr(VI) reaches stable. Palladium, a kind of platinum group metal, owns catalytic capacity for a variety of hydrogenations. In this study, Pd nanoparticles (PdNPs) were generated through enzymatic recovery by microbes of activated sludge at various biomass/Pd, and further used for the Cr(VI) reduction. The results show that biomass had a strong adsorption capacity for Pd(II), which was 17.25 mg Pd/g sludge. The XRD and TEM-EDX results confirmed the existence of PdNPs associated with microbes (bio-Pd). The increase of biomass had little effect on the reduction rate of Pd(II), but it could cause decreasing particle size and shifting location of Pd(0) with the better dispersion degree on the cell surface. In the Cr(VI) reduction experiments, Cr(VI) was first adsorbed on bio-Pd with hydrogen and then reduced using active hydrogen as electron donor. Biomass improved the catalytic activity of PdNPs. When the biomass/Pd (w/w) ratio increased to six or higher, Cr(VI) reduction achieved maximum rate that 50 mg/L of Cr(VI) could be rapidly reduced in one minute.  相似文献   

20.
Adsorption and desorption of 137Cs by acid sulphate soils from the Nakhon Nayok province, South Central Plain of Thailand located near the Ongkarak Nuclear Research Center (ONRC) were investigated using a batch equilibration technique. The influence of added limestone (12 and 18 tons ha-1) on 137Cs adsorption-desorption was studied. Based on Freundlich isotherms, both adsorption and desorption of 137Cs were nonlinear. A large portion (98.26-99.97%) of added 137Cs (3.7 × 103-7.03 × 105 Bq l-1) was sorbed by the soils with or without added lime. The higher lime treatments, however, favoured stronger adsorption of 137Cs as compared with soil with no lime, which was supported by higher Kads values. The addition of lime, the cation exchange capacity and pH of the soil increased and hence favoured the stronger adsorption of 137Cs. Acid sulphate soils with a high clay content, medium to high organic matter, high CEC, and predominant clay types consisting of a mixture of illite, kaolinite, and montmorillonite were the main soil factors contributing to the high 137Cs adsorption capacity. Competing cations such as NH4+, K+, Na+, Ca2+, and Mg2+ had little influence on 137Cs adsorption as compared with liming, where a significant positive correlation between Kads and soil pH was observed. The 137Cs adsorption-desorption characteristics of the acid sulphate soils studied exhibited a very strong irreversible sorption pattern. Only a small portion (0.09-0.58%) of 137Cs adsorbed at the highest added initial 137Cs concentration was desorbed by four successive soil extractions. Results clearly demonstrated that Nakhon Nayok province acid sulphate soils have a high 137Cs adsorption capacity, which limits the 137Cs bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号