首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Direct ground water seepage measurements were made in Lake Washington, Florida, to determine the importance of seepage as a water and chloride source to the lake and upper St. Johns River. Over 200 seepage measurements were made in the lake and adjoining canals from July through December 1978. Results indicated that seepage into the shore areas of Lake Washington was an insignificant water source to the lake, representing 0.6 percent of the inputs, and was nearly balanced by ground water recharge in the midlake region. Drainage canals entering Lake Washington, however, exhibited high average seepage rates (17.7 L/m2-day), over eight times the lake average (2.01 L/M2-day). Discharge from the St. Johns River was the dominant factor in the water budget of Lake Washington and represented approximately 88 percent of the inputs during the study year. Although inputs from the drainage canals represented only 6.6 percent of the St. Johns River annual discharge, these canals represented 20.4 percent of the annual St. Johns River chloride loading and 62.1 percent of the river chloride loading during the five driest months of 1978. Evidence from this study indicates that rising levels of chloride in the river in recent years are largely attributable to ground water seepage in channelized areas, particularly in the headwaters. These chloride inputs assume greater importance during low water/low flow periods.  相似文献   

2.
ABSTRACT: Water quality in eutrophic Lake Tohopekaliga, Florida, improved markedly from 1982 to 1992 as a result of reductions in phosphorus and nitrogen loading to the lake. Annual budgets of water, chloride, phosphorus and nitrogen were constructed for the lake, and indicate it is a sink for phosphorus and a source for nitrogen. Water column concentrations of total phosphorus, soluble reactive phosphorus, total nitrogen, dissolved inorganic nitrogen, and chlorophyll a all declined as external inputs of nutrients decreased. Water column nitrogen: phosphorus ratios have increased, suggesting a probable shift from nitrogen- to phosphorus-limitation. This apparent shift in nutrient limitation status also is supported by comparisons of the mean Trophic State Indices for phosphorus, nitrogen, and chlorophyll a. These improvements in water quality are attributed to the diversion of wastewater treatment plant effluent from the lake, and the increased use of wet retention ponds for stormwater runoff.  相似文献   

3.
Groundwater exchanges with most lakes are rarely quantified because there are many technical challenges to quantification. We investigated a lakebed mapping approach to infer the relative areas of groundwater exchange in 12 prairie shallow lakes and five Laurentian mixed forest shallow lakes in Minnesota, USA in 2011. We used a relatively common approach (seepage meters) to provide baseline information on the magnitude and direction of flow at four locations in each lake. To expand from point measurements to the whole‐lake scale, we explored use of specific conductivity as a cheaper and more time efficient proxy for groundwater discharge to lakes. We validated the approach at near shore stations in each lake where seepage meter measurements and specific conductivity surveys overlapped. Specific conductivity surveys provided a similar assessment of groundwater discharge compared to seepage meters for 50% of the lake‐sampling period combinations. The lakebed mapping approach, when validated for a lake with a limited number of seepage meter (or alternative methods) measurements, offers the advantages of being more time and labor efficient over the use of a similar number of seepage meter monitoring locations; seepage meters (or piezometers, for example) are costlier in terms of equipment and labor, even for single‐lake studies. We show the combined approach could provide useful baselines for understanding and mapping groundwater exchange in shallow lakes.  相似文献   

4.
ABSTRACT: Direct measurements indicate that subsurface seepage in the littoral zone contributed 17.5 and 2.0 percent of the total hydraulic inputs, respectively, to Lakes Conway and Apopka, Florida. Two variations of seepage measuring devices were evaluated and gave relative standard deviations of 7 and 24 percent. Measurement inaccuracies were minimized by using large diameter (0.9 cm ID) plastic tubing. For a given transect perpendicular to shore, flow patterns were reproducible over time. Seepage flows ranged from 0 to 112 1/m2-day and most were between 4 and 30 1/m2-day. The detection limit was about 0.2 1/m2-day for a one-hour collection period. Seepage occured primarily within 30 m of shore and generally decreased exponentially with distance from shore. The shape of the bottom profile influenced flow patterns; lake bottoms with steeper slopes had higher flows that were compressed within a narrower zone. After a short-term rain event at Lake Conway, seepage flows increased rapidly to 2.4 times the prerain flow for 1 h and decreased to near background within about 6 h.  相似文献   

5.
ABSTRACT: A selenium budget for Lake Powell, Utah-Arizona was determined based on selenium loads at the principal stream input sites to and the output site from the lake. Based on data collected during 1985-1994, 83 percent of the selenium entering Lake Powell is accounted for at the output site. The rest of the selenium may be incorporated by lake sediment or used by the biota. Considerably more selenium per unit area is produced from the Colorado River Basin above the Colorado River-Green River confluence than from the Green River Basin and the San Juan River Basin combined. The Gunnison River Basin and the Grand Valley in Colorado produce an estimated 31 and 30 percent of the selenium that reaches Lake Powell, respectively. Irrigation-related activities are thought to be responsible for mobilizing 71 percent of the selenium that reaches Lake Powell. Selenium concentrations in water at Imperial Dam on the Colorado River upstream of the United States-Mexico international border are similar to those at the output site of Lake Powell. Therefore, most selenium observed in downstream areas of the Colorado River therefore probably is derived mostly from the Colorado River Basin above Lake Powell.  相似文献   

6.
Lake Okeechobee (surface area = 1830 km2, mean depth = 3.5 m), the largest lake in Florida, is eutrophic and has nitrogen and phosphorus loading rates in excess of nearly all established criteria. The lake is not homogeneous regarding trophic conditions, and spatial and temporal variations occur regarding nutrient limitation. Nonetheless, phosphorus loading rate and trophic state data fit reasonably well to various input-output models developed for temperate lakes. Modification of the models by regression analysis to fit data for Florida lakes resulted in improved predictions for most parameters. Analysis of nutrient management alternatives for the lake indicates that a 75% reduction of phosphorus loading from the largest source (the Taylor Creek-Nubbins Slough watershed) would reduce the average chlorophyll a concentration by less than 20%. Complete elimination of inputs from the largest nitrogen source (the Everglades Agricultural Area) would decrease the average nitrogen concentration in the lake by about 20%. Limitations of nutrient inputoutput models regarding analysis of trophic conditions and management alternatives for the lake are discussed.  相似文献   

7.
ABSTRACT: Dilution/flushing has been documented as an effective restoration technique to restore eutrophic Moses and Green Lakes in Washington State. The dilution water added to both lakes was low in nitrogen and phosphorus content relative to the lake or normal input water. Consequently, lake nutrient content dropped predictably. Dilution or flushing rates were about ten times normal during the spring-summer periods in Moses Lake and three times normal on an annual basis in Green Lake. Improvement in quality (nutrients, algae, and transparency) was on the order of 50 percent in Moses Lake and even greater in Green Lake. The facilities for supplying dilution water were largely in place for the cited lakes; thus, costs for water transport were minimal. Available facilities, and therefore, costs, for water transport would usually vary greatly, however. Achieving maximum benefit from the technique may be more limited by availability of low nutrient water rather than facilities costs. Quality improvement may occur from physical effects of algal cell washout and water column instability if only high nutrient water is available.  相似文献   

8.
ABSTRACT: The water budget computation in shallow lakes is complicated because marsh vegetation can transpire large quantities of lake water. Thus, a model including the marsh zone evapotranspiration (WET) was developed to compute the water budget for Lake Okeechobee. Three periods of testing (1969–74), planning (1963–74), and recorded period (1952–77) were used to compare the differences of the sum of storage deviation between the WET and conventional methods (WOET). Results of the WOET method showed that the sum of stage deviations were 87.42 cm (2.868 ft.), 231.80 cm (7.605 ft.), and 284.50 cm (9.333 ft.) in the testing, planning, and recorded periods, respectively. These stage deviations are equivalent in the same order to 29, 76, and 93 percent of the lake volume. In general, the WET method not only was applicable to compute the water budget for the lake but also reduced the sum of storage deviation by about 42, 31, and 49 percent, respectively, in those three periods. The storage deviation in WET method was reduced on an average to about 2 percent each year in all three periods, and the deviations were scattered more randomly than in WOET.  相似文献   

9.
Lake eutrophication problems have received considerable attention in Taiwan, especially because they relate to the quality of drinking water. In this study, steady-state river water quality and lake eutrophication models are solved using dynamic programming algorithms to find the nutrient removal rates for eutrophication control during dry season. The kinetic cycle of chlorophyll-a, phosphorus and nitrogen for a complete-mixed lake is considered in the optimization framework. The Newton-iterative technique is adopted to solve the nonlinear equations for the steady-state lake eutrophication model. The optimization framework is applied to Cheng-Ching Lake in southern Taiwan. Several nutrient loading scenarios for eutrophication control are studied. Optimization results for nutrient removal rates and corresponding wastewater treatment capacities of each reach of the Kao-Ping River define the least cost approach to lake eutrophication control. A natural purification method, structural free water surface wetland, is also suggested to save more investment and improve river water quality at the same time.  相似文献   

10.
ABSTRACT Bottom sediment in Hillsdale Lake, Kansas, was analyzed to estimate the annual load of total phosphorus deposited in the lake from nonpoint sources. Topographic, bathymetric, and sediment-core data were used to estimate the total mass of phosphorus in the lake-bottom sediment. Available streamflow and water-quality data were used to compute the mean annual mass of phosphorus (dissolved plus suspended) exiting the lake. The mean annual load of phosphorus added to the lake from point sources was estimated from previous studies. A simple mass balance then was used to compute the mean annual load of phosphorus from non-point sources. The total mass of phosphorus in the lake-bottom sediment was estimated to be 924,000 kg, with a mean annual load of 62,000 kg. The mean annual mass of phosphorus exiting in the lake outflow was estimated to be about 8,000 kg. The mean annual loads of phosphorus added to the lake from point and nonpoint sources were estimated to be 5,000 and 65,000 kg, respectively. Thus, the contribution to the total mean annual phosphorus load in Hillsdale Lake is about 7 percent from point sources and about 93 percent from nonpoint sources.  相似文献   

11.
ABSTRACT: Measured stream discharge plus calculated ground water discharge (total measured runoff) were compared with runoff calculated by the unit-runoff method for the two largest watersheds of Mirror Lake for 1981–1983. Runoff calculated by the unit-runoff method, using Hubbard Brook watershed 3 as the index watershed, was greater than the total measured runoff into Mirror Lake during periods of high flow and slightly less than the total measured runoff into Mirror Lake during periods of low flow. Annual calculated unit runoff was 17 to 37 percent greater than total measured runoff. Differences in monthly runoff are far greater, ranging from 0 to greater than 100 percent. For high flows the calculated unit runoff is about 2 times greater than total measured runoff. For low flows the northwest basin of Mirror Lake has the greatest ground water contribution compared to the other two basins. In contrast, Hubbard Brook watershed 3 has the least ground water contribution.  相似文献   

12.
Phosphorus loading from precipitation and more than a dozen tributaries of Big Beat Lake, Woman, was determined for the period from January to December 1978. Direct precipitation contributed 1120 kg·P·yr-1 (0.096 g P·m-2·yr-1) while tributary runoff contributed 21,560 kg for a total P loading of 1.84 g P·m-2 Rathbone creek, although accounting for only 4 percent of the hydro-logic input to Big Bear Lake, contributed >27 percent of the annual phosphorus load. Phosphorus loading increased with increased impervious geology and increased development. Nitrogen loading exhibited similar loading patterns. Big Beat Lake is currently eutrophic and is likely to remain eutrophic. Calculations based on Vollenweider's critical phosphorus loading concept indicated that tributary P-loading would have to be reduced by >95 percent to achieve mesotrophic conditions. The completion of Big Bear Dam created a “naturally” eutrophic re mix which dl require proper management to enhance its resource potential.  相似文献   

13.
In order to study system responses of Falls of the Neuse Reservoir (Falls Lake) to varied nutrient loadings, a coupled three-dimensional hydrodynamic and eutrophication model was applied. The model was calibrated using 2005 and 2006 intensive survey data, and validated using 2007 survey data. Compared with historical hydrological records, 2005 and 2007 were considered as dry years and 2006 was recognized as a normal year. Relatively higher nutrient fluxes from the sediment were specified for dry year model simulations. The differences were probably due to longer residence time and hence higher nutrient retention rate during dry years in Falls Lake. During the normal year of 2006, approximately 70% of total nitrogen (TN) and 80% of total phosphorus (TP) were delivered from the tributaries; about 20% (TN and TP) were from the sediment bottom. During the dry years of 2005 and 2007, the amount of TN released from sediment was equivalent to that introduced from the tributaries, indicating the critical role of nutrient recycling within the system in dry years. The model results also suggest that both nitrogen and phosphorus are limiting phytoplankton growth in Falls Lake. In the upper part of the lake where high turbidity was observed, nitrogen limitation appeared to dominate. Scenario model runs also suggest that great nutrient loading reductions are needed for Falls Lake to meet the water quality standard.  相似文献   

14.
Economic evaluations of restored or enhanced lakes in Florida indicated gravity drawdown was the least expensive action, whereas effluent diversion was 10,000 times more costly on a per hectare basis, with the other lake treatment costs occurring in the following order: gravity drawdown < grass carp introduction < mechanical drawdown < aeration < stormwater control = drawdown-dredging < effluent diversion. Within a particular treatment category, the costs spanned approximately one and one half orders of magnitude. Contrary to the abundant cost data, which permitted an economic analysis, inappropriate statistical design and lack of commitment toward sampling Florida's restored lakes undermines attempts to understand long-term water quality responses to various enhancement techniques. Using Lake Tohopekaliga as a case study, ordinary statistical tests produced contradictory and unreliable interpretations on the effectiveness of drawdown and phosphorus removal at sewage treatment plants in improving the trophic state index. This emphasizes the need for more robust statistical approaches and more detailed data collection in evaluating lake restoration activities It is unfortunate for Florida's lake restoration program that quantitative conclusions based on inferential statistics, replete with tests of assumptions, is limited to very few lakes  相似文献   

15.
he influence of woody vegetation on the reliability of a sandy levee was investigated using field data in seepage and slope stability analyses. Field data were collected from selected sites within a 10-km segment of a channel levee on the Sacramento River near Elkhorn, California. Root architecture and distribution were determined using the profile-wall method in which root cross sections were exposed in the vertical wall of an excavated trench. Transects running both parallel and perpendicular to the crest of the levee were excavated at six sites. Each site was dominated by different plant species: five sites were adjacent to trees or woody shrubs, while one supported only herbaceous growth. Lateral plant roots were primarily restricted to, and modified, the near-surface soil horizons to a depth of approximately 1 meter. Root area ratios (RARs) did not exceed 2.02 percent and generally decreased exponentially with depth. At depths greater than 20 cm, mean RARs for sites dominated by wood species were not significantly different from the mean RAB for the herbaceous site. No open voids clearly attributable to plant roots were observed. Roots reinforced the levee soil and increased shear resistance in a measurable manner. Infinite slope and circular arc stability analyses were performed on the landward and riverward slopes under different hydraulic loading conditions. Infinite slope analyses indicated increasing root area ratio from 0.01 percent to 1 percent increased the factor of safety from less than one to more than seven. Circular arc analyses indicated that even the lower measured root concentrations sufficed to increase safety factors for arcs with maximum depths of about 1 m from less than one to about 1.2. Our findings suggest that allowing woody shrubs and small trees on levees would provide environmental benefits and would enhance structural integrity without the hazards associated with large trees such as wind-throwing.  相似文献   

16.
ABSTRACT: A loading function methodology is presented for predicting runoff, sediment, and nutrient losses from complex watersheds. Separate models are defined for cropland, forest, urban and barnyard sources, and procedures for estimating baseflow nutrients are provided. The loading functions are designed for use as a preliminary screening tool to isolate the major contributors in a watershed. Input data sources are readily available and the functions do not require costly calibrations. Data requirements include watershed land use and soil information, daily precipitation and temperature records and rainfall erosivities. Comparison of predicted and measured water, sediment, and nutrient runoff fluxes for the West Branch Deleware River in New York, indicated that runoff was underpredicted by about 14 percent while dissolved nutrients were within 30 percent of observed values. Sediment and solid-phase nutrients were overpredicted by about 50 percent. An annual nutrient budget for the West Branch Delaware River showed that cornland was the major source of sediment, solid phase nutrients, and total phosphorus. Waste water treatment plants and ground water discharge contributed the most dissolved phosphorus and dissolved nitrogen, respectively.  相似文献   

17.
ABSTRACT: Nutrient loading from beef pastures located within the northern Lake Okeechobee watershed in Florida, has been identified as a source of phosphorus contributing to the accelerated eutrophication of the lake. Since 1989 within the watershed, 557 agricultural drainage sites, mainly beef pasture, have been monitored for compliance under a regulatory program. Of those sites, 154 were actively monitored for phosphorus concentrations from October 1, 1998, to September 30, 1999. Of these 154 sites, 77 were considered to be out of compliance (OOC). An OOC site is defined as having runoff with a 12‐month average phosphorus concentration exceeding the permitted discharge limit. The average annual phosphorous load from the 77 OOC sites for an eight‐year study period from October 1, 1991, to September 30, 1999, was estimated using measured concentration values and simulated runoff obtained from an agricultural nonpoint source pollution model, CREAMS‐WT. The 77 OOC sites produced an estimated average annual 46 metric tonnes of phosphorus load, of which an estimated 22 tonnes of phosphorus reached Lake Okeechobee on an average annual basis. The remaining estimated average annual 24 tonnes of phosphorus load was retained by streams and wetlands in the discharge transport system between the sites and the lake. The estimated average annual load reaching Lake Okeechobee from the OOC sites represented 11 percent of the phosphorus load above a five‐year average annual target load for the lake. However, the OOC site drainage areas represented only 3 percent of the northern watershed that drains into the lake. Of the 77 OOC sites, 12 sites had an average annual phosphorus loading rate equal to or greater than 3.0 kg/ha and were placed on the priority list for the Critical Restoration Project in the Lake Okeechobee watershed. To estimate the possible phosphorus load reductions from the 77 sites, two scenarios were modeled. The first scenario reduced phosphorus concentrations in runoff to the permitted discharge limits under the Lake Okeechobee regulatory program. The second scenario changed current land uses to native rangeland with an estimated annual offsite total phosphorus areal loading rate of 0.114 kg/ha. These two scenarios are hypothetical with assumed concentration values and loading rate. Model results showed that the first management scenario reduced the average annual phosphorus load to the lake by an estimated 15 tonnes. The second scenario reduced the average annual phosphorus load to the lake by an estimated 21 tonnes.  相似文献   

18.
ABSTRACT: This paper reports an analysis of the water budgets of 10 small (5–6 ha) diked areas (cells) within the Delta Marsh in southcentral Manitoba, Canada. The important terms in the water budget equation in this study were precipitation (P), water pumped in (SWI), evapotranspiration (ET), seepage in (GWI) and out (GWO), and change in storage (ΔS). P, SWI, and S were measured directly, and the sum of ET and GWO determined by difference. Estimating ET as 0.7 pan evaporation gave a seepage loss of 2.9 mm/day from the most intensively studied cell. Other methods of estimating ET produced estimates of GWO ranging from 2.4 to 3.8 mm/day. Water budgets for less intensively studied cells indicated seepage loss increased as perimeter available for seepage increased, but not proportionately. Efforts to measure seepage directly or estimate it from measured hydraulic gradients and hydraulic conductivity produced estimates much lower than the estimates from the water budget equation. Hydraulic conductivities were very heterogeneous, reflecting the sorting of water deposited sediments. Comparison of the hydraulic conductivities with seepage estimates from the water budget strongly suggests water movement downward as well as laterally from these diked areas.  相似文献   

19.
ABSTRACT Two lakes having similar soil types were studied to determine the effects of age and water fluctuations on plankton, benthos and fish populations. Bluff Lake is an older man-made lake which is drawn down in the mid-summer. Oktibbeha County Lake is a young lake and the water levels are maintained. Chemistry data from the two lakes indicate that their chemical properties are very similar. Neither lake would be considered very fertile. Net plankton populations in Bluff Lake and Oktibbeha County Lake were comparable when analyzed on a number of organisms per liter basis. Fluctuations of water levels did not seem to have an effect on the net plankton populations. The benthic population in Bluff Lake is slightly higher than that found in Oktibbeha County Lake. This is true for both numbers and weight per square meter. The species composition of benthic organisms in the two lakes were similar. Based on one-acre samples from each lake, Bluff Lake has a more balanced fish population than does Oktibbeha County Lake. Neither, however, seems to support populations of game fish in which a high percentage of these are in the available or harvestable range. Both lakes contain high populations of gizzard shad.  相似文献   

20.
ABSTRACT: The Vrana Lake on the island of Cres in the Adriatic Sea represents a specific phenomenon of karst hydrology. The island of Cres covers an area of 404.3 km2 with an average volume of 220 × 106 m3 of fresh water in the lake. The island has an average rainfall of 1,063 mm, with a Mediterranean climate. The lake has a bottom reaching a depth of 62 m below mean sea level. The average water level is 14 m above mean sea level. The most probable theories on the origin of the lake and its hycirologic-hydrogeologic functioning state that it is a flooded poije in karst. The water budget method was used to define the lake catchments area at approximately 25 km2. During the last six years, there has been drastic decrease of about 3 m in the lake's water level. This phenomenon was analyzed and it was calculated that 53 percent of the water-level decline was caused by water discharges from the lake to satisfy water supply demands, and 47 percent was due to a period of low precipitation during the analyzed period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号