首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
There is a growing evidence that the ecological and biological integrity of the lagoon has declined during the last 50 years, probably due to the decline in water quality. Establishment of a watershed scale seagrass-based nutrient load assessment is the major aim of water quality management in the Indian River Lagoon (IRL). Best estimate loadings incorporate wet and dry deposition, surface water, groundwater, sediment nutrient flux, and point source effluent discharge data. On the average, the IRL is receiving annual external loadings of 832, 645 and 94,476kg of total nitrogen (TN) and total phosphorus (TP), respectively, from stormwater discharges and agricultural runoff. The average internal cycling of TN and TP from sediment deposits in the IRL was about 42,640kg TN and 1050kg TPyr(-1). Indirect evidence suggests that atmospheric deposition has played a role in the ongoing nutrient enrichment in the IRL. The estimated total atmospheric deposition of TN and TP was about 32,940 and 824kgyr(-1), while groundwater contribution was about 84,920 and 24,275kgyr(-1), respectively, to the surface waters of the IRL. The estimated annual contribution of point effluent discharge was about 60,408kg TN and 7248kg TP. In total, the IRL basin is receiving an annual loading of about 1,053,553kg TN and 127,873kg TP. With these results, it is clear that the current rate of nutrient loadings is causing a shift in the primary producers of the IRL from macrophyte to phytoplankton- or algal-based system. The goal is to reverse that shift, to attain and maintain a macrophyte-based estuarine system in the IRL.  相似文献   

2.
Cyanobacterial blooms in Lake Taihu occurred at the end of April 2007 and had crucial impacts on the livelihood of millions of people living there. Excessive nutrients may promote bloom formation. Atmospheric nitrogen (N) and phosphorus (P) deposition appears to play an important role in algal bloom formation. Bulk deposition and rain water samples were collected respectively from May 1 to November 30, 2007, the period of optimal algal growth, to measure the bulk atmospheric deposition rate, wet deposition rate, and dry deposition rate for total nitrogen (TN; i.e., all species of nitrogen), and total phosphorus (TP; i.e., all species of phosphorus), in northern Lake Taihu, China. The trends of the bulk atmospheric deposition rate for TN and the wet deposition rate for TN showed double peaks during the observation period and distinct influence with plum rains and typhoons. Meanwhile, monthly bulk atmospheric deposition rates for TP showed little influence of annual precipitation. However, excessive rain may lead to high atmospheric N and P deposition rates. In bulk deposition samples, the average percentage of total dissolved nitrogen accounting for TN was 91.2% and changed little with time. However, the average percentage of total dissolved phosphorus accounting for TP was 65.6% and changed substantially with time. Annual bulk atmospheric deposition rates of TN and TP during 2007 in Lake Taihu were estimated to be 2,976 and 84 kg km−2 a−1, respectively. The results showed decreases of 34.4% and 78.7%, respectively, compared to 2002–2003. Annual bulk deposition load of TN for Lake Taihu was estimated at 6,958 t a−1 in 2007 including 4,642 t a−1 of wet deposition, lower than the values obtained in 2002–2003. This may be due to measures taken to save energy and emission control regulations in the Yangtze River Delta. Nevertheless, high atmospheric N and P deposition loads helped support cyanobacterial blooms in northern Lake Taihu during summer and autumn, the period of favorable algal growth.  相似文献   

3.
上覆水营养盐浓度对底泥氮磷释放的影响   总被引:2,自引:0,他引:2  
采用校园水体底泥进行上覆水营养盐浓度对底泥释放量之间的关系研究。结果表明,在本实验条件下,上覆水水质影响底泥氮、磷的释放,尤其显著影响氮、磷的初期释放;上覆水氮、磷的浓度越小,底泥氮、磷的释放量越大;上覆水氮、磷的浓度超过一定值,会抑制底泥氮、磷的释放。  相似文献   

4.
Suplee, Michael W., Vicki Watson, Walter K. Dodds, and Chris Shirley, 2012. Response of Algal Biomass to Large‐Scale Nutrient Controls in the Clark Fork River, Montana, United States. Journal of the American Water Resources Association (JAWRA) 48(5): 1008‐1021. DOI: 10.1111/j.1752‐1688.2012.00666.x Abstract: Nutrient pollution is an ongoing concern in rivers. Although nutrient targets have been proposed for rivers, little is known about long‐term success of programs to decrease river nutrients and algal biomass. Twelve years of summer data (1998‐2009) collected along 383 km of the Clark Fork River were analyzed to ascertain whether a basin‐wide nutrient reduction program lowered ambient total nitrogen (TN) and total phosphorus (TP) concentrations, and bottom‐attached algal biomass. Target nutrient and algal biomass levels were established for the program in 1998. Significant declines were observed in TP but not TN along the entire river. Downstream of the city of Missoula, TP declined below a literature‐derived TP saturation breakpoint and met program targets after 2005; TN was below targets since 2007. Algal biomass also declined significantly below Missoula. Trends there likely relate to the city’s wastewater facility upgrades, despite its 20% population increase. Upstream of Missoula, nutrient reductions were less substantial; still, TP and TN declined toward saturation breakpoints, but no significant reductions in algal biomass occurred, and program targets were not met. The largest P‐load reduction to the river was from a basin‐wide phosphate laundry detergent ban set 10 years before, in 1989. We document that nutrient reductions in rivers can be successful in controlling algal biomass, but require achievement of concentrations below saturation and likely close to natural background.  相似文献   

5.
A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.  相似文献   

6.
A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.  相似文献   

7.
Incorporation of manure into cultivated soils is generally recommended to minimize nutrient losses. A 3-yr study was conducted to evaluate sediment and nutrient losses with different tillage methods (moldboard plow, heavy-duty cultivator, double disk, and no-incorporation) for incorporation of beef cattle manure in a silage barley (Hordeum vulgare L.) cropping system. Runoff depths, sediment losses, and surface and subsurface nutrient transfers were determined from manured and unmanured field plots at Lethbridge, Alberta, Canada. A Guelph rainfall simulator was used to generate 30 min of runoff. Sediment losses among our tillage treatments (137.4-203.6 kg ha(-1)) were not significantly different due to compensating differences in runoff depths. Mass losses of total phosphorus (TP) and total nitrogen (TN) in surface runoff were greatest from the no-incorporation (NI) treatments, with reductions in TP loads of 14% for double disk (DD), 43% for cultivator (CU), and 79% for moldboard plow (MP) treatments. Total N load reductions in 2002 were 26% for DD, 70% for CU, and 95% for MP treatments compared to the NI treatments. Nutrient losses following incorporation of manure with the DD or CU methods were not significantly different from the NI treatments. Manure treatments generally had lower runoff depths and sediment losses, and higher phosphorus and nitrogen losses than the control treatments. Subsurface concentrations of NH4-N, NO3-N, and TN were greatest from the MP treatments, whereas subsurface phosphorus concentrations were not affected by tillage method. Tillage with a cultivator or double disk minimized combined surface and subsurface nutrient losses immediately after annual manure applications.  相似文献   

8.
A whole-lake alum treatment was applied to eutrophic Spring Lake during October and November 2005. Eight months later, an ecological assessment of the lake was performed and compared with data collected in 2003 and 2004. Field measurements showed reduced soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations in the water column the summer after the alum application, but chlorophyll levels and irradiance profiles were not significantly affected. Total macroinvertebrate density declined significantly in 2006 compared with 2004, with chaoborids and oligochaetes experiencing the greatest reductions. Internal phosphorus release rates, measured using sediment cores incubated in the laboratory, ranged from -0.052 to 0.877 mg TP m(-2) d(-1) under anaerobic conditions. These internal loading rates were significantly lower than those measured in 2003 at three out of four sites. Mean porewater SRP concentrations were lower in 2006 than in 2003, but this difference was statistically significant only under aerobic conditions. The NaOH-extractable SRP fraction in the sediment was also significantly lower in 2006 compared with 2003, whereas the HCl-extractable SRP sediment fraction showed the opposite pattern. Overall, these results indicate that the alum treatment effectively reduced internal P loading in Spring Lake. However, water column phosphorus concentrations remain high in this system, presumably due to high external loading levels, and may account for the high chlorophyll levels. An integrated watershed management approach that includes reducing internal and external inputs of P is necessary to address the cultural eutrophication of Spring Lake.  相似文献   

9.
ABSTRACT: A Geographic Information System (GIS) based non‐point source runoff model is developed for the Las Vegas Valley, Nevada, to estimate the nutrient loads during the years 2000 and 2001. The estimated nonpoint source loads are compared with current wastewater treatment facilities loads to determine the non‐point source contribution of total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) on a monthly and annual time scale. An innovative calibration procedure is used to estimate the pollutant concentrations for different land uses based on available water quality data at the outlet. Results indicate that the pollutant concentrations are higher for the Las Vegas Valley than previous published values for semi‐arid and arid regions. The total TP and TN loads from nonpoint sources are approximately 15 percent and 4 percent, respectively, of the total load to the receiving water body, Lake Mead. The TP loads during wet periods approach the permitted loads from the wastewater treatment plants that discharge into Las Vegas Wash. In addition, the GIS model is used to track pollutant loads in the stream channels for one of the subwatersheds. This is useful for planning the location of Best Management Practices to control nonpoint pollutant loads.  相似文献   

10.
Nonpoint-source pollution and water body eutrophication have become increasing concerns for scientists and policymakers. Nitrogen and phosphorus affect environmental pollution, especially lake eutrophication. To assess the environmental risk of soil total nitrogen (TN) and total phosphorus (TP) pollution, a typical ecological unit of Dongting Lake plain was selected as the experimental site. To verify the stationary of the data, a moving windows technique was adopted. Our results showed that Box-Cox transformation achieved normality in the data set and dampened the effect of outliers. The best theoretical model for semivariogram of TN and TP was a spherical model. The ordinary kriging estimates of TN and TP concentrations were mapped. The integrative comparisons of semivariogram parameters with different trends to the kriging prediction errors of TN and TP indicated that the two-order trend is preferable. Kriging SDs provided valuable information that will increase the accuracy of TN and TP mapping. The probability kriging method is useful to assess the risk of N and P pollution by providing the conditional probability of N and P concentrations exceeding the threshold concentrations of 3.2 and 1.05 g/kg, respectively. The probability distribution of TN and TP at different levels will be helpful to conduct risk assessment, optimize fertilization, and control the pollution of N and P.  相似文献   

11.
Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, “wetland hydrological transport variables,” to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.  相似文献   

12.
A 4-yr (2005-2008) study was conducted to evaluate the potential of pasture water management for controlling nutrient losses in surface runoff in the Northern Everglades. Two pasture water management treatments were investigated on Bahia grass ( Flüggé) pastures: reduced flow and unobstructed flow. The reduced flow treatment was applied to four of eight 20.23-ha pastures by installing water control structures in pasture drainage ditches with flashboards set at a predetermined height. Four other pastures received the unobstructed-flow treatment, in which surface runoff exited pastures unimpeded. Automated instruments measured runoff volume and collected surface water samples for nutrient analysis. In analyzing data for before-after treatment analysis, the 2005 results were removed because of structural failure in water control structures and the 2007 results were removed because of drought conditions. Pasture water retention significantly reduced annual total nitrogen (TN) loads, which were 11.28 kg ha and 6.28 kg ha, respectively, in pastures with unobstructed and reduced flow. Total phosphorus (TP) loads were 27% lower in pastures with reduced flow than in pastures with unobstructed flow, but this difference was not statistically significant. Concentrations of available soil P were significantly greater in pastures with reduced flow. Pasture water retention appears to be an effective approach for reducing runoff volume and TN loads from cattle pastures in the Northern Everglades, but the potential to reduce TP loads may be diminished if higher water table conditions cause increased P release from soils, which could result in higher P concentration in surface runoff.  相似文献   

13.
太湖流域上游典型水体中氮、磷动态变化特征研究   总被引:2,自引:0,他引:2  
本研究在太湖流域上游的太湖与湖间的区域内,选择了25个监测点,对6种典型水体中TN、TP含量进行了为期1年的动态监测,分析了不同类型水体中氮、磷动态变化特征。其结果表明,畜禽养殖厂周围水体TN、TP含量在4~8月份相对较低;水产养殖场周围水体和居民区周围水体TN含量在1~6月份高于其他时间段,水产养殖场周围水体TP含较低的月份在5~8月,而居民区周围水体TP含量变化无明显规律;农田周围水体TN、TP含量较高的月份在12月至次年5月期间,最大值出现在3~4月;入湖河流与湖水TN含量变化趋势与农田周围水体基本一致,入湖河流TP含量在6~10月期间明显低于其他时间段,而湖水中TP含量变化则无明显规律。  相似文献   

14.
邛海水质变化趋势及保护对策研究   总被引:1,自引:0,他引:1  
本文通过对邛海流域现状污染源进行调查,邛海流域COD、氨氮、总氮和总磷产生量分别为5892.1t/a、995.6t/a、2888.2t/a和1105.1t/a,污染负荷主要来自面源污染.通过2002 ~ 2011年邛海水质监测数据分析,邛海水质近10年总体保持Ⅱ~Ⅲ类,处于中营养状态,2004~ 2006年水质相对较差,2006年以后水质逐渐好转.总磷、总氮是邛海主要污染因子,海河口是邛海污染最严重的区域.为实现邛海水质和流域生态环境持续改善,从产业结构优化、流域污染源治理、生态保育和流域生态环境综合监管等方面提出对策建议.  相似文献   

15.
ABSTRACT: Five types of land use/land covers in the West Tiaoxi watershed of China were studied for nutrient losses in artificial rainstorm runoff. A self‐designed rainfall simulator was used. In situ rainfall simulations were used to: (1) compare the concentrations of nitrogen and phosphorous in different land use/land covers and (2) evaluate the flux of nitrogen and phosphorous export from runoff and sediment in various types of land use/land covers. Three duplicated experiments were carried out under rain intensity of 2 mm/min, each lasting 32 minutes on a 3 m2 plot. Characteristics of various species of nitrogen and phosphorous in runoff and sediment were investigated. The results showed that the concentrations of total nitrogen (TN) and total phosphorous (TP) were greatest in runoff from mulberry trees and smallest from pine forest. The TN and TP export was mainly from suspended particulate in runoff. TN and TP exports from the top 10 cm layer of five types of land use/land covers were estimated as high as 4.66 to 9.40 g/m2 and 2.57 to 4.89 g/m2, respectively, of which exports through sediment of runoff accounted for more than 90 percent and 97 percent. The rate of TN and TP exports ranged from 2.68 to approximately 14.48 and 0.45 to approximately 4.11 mg/m2/min in runoff; these rates were much lower than those of 100.01 to approximately 172.67 and 72.82 to approximately 135.96 mg/m2/min in the runoff sediment.  相似文献   

16.
沱江富顺段水质分析及污染状况研究   总被引:1,自引:0,他引:1  
刘建平 《四川环境》2013,32(2):23-26
为了解沱江富顺段水质情况,采用相应的国家标准方法对沱江水体的氮、磷、化学需氧量、生化需氧量等指标进行监测。3个监测断面TN、TP的平均浓度分别为3.31mg/L、0.247mg/L,其中TN含量超标3倍以上,TP含量超过标准的1.2倍,建议相关部门应在河流平水期和枯水期严格控制氮、磷的排放,可通过调高工业废水、污水处理厂氮、磷排放标准,缓解沱江氮、磷污染程度。  相似文献   

17.
Environmental dredging is a primary remedial option for removal of the contaminated material from aquatic environment. Of primary concern in environmental dredging is the effectiveness of the intended sediment removal. A 5-year field monitoring study was conducted to assess the effectiveness of the environmental dredging in South Lake, China. The concentrations of total nitrogen (TN), total phosphors, and heavy metals (Zn, Pb, Cd, Cu, Cr, Ni, Hg, and As) before and after dredging in sediment were determined and compared. Multiple ecological risk indices were employed to assess the contamination of heavy metals before and after dredging. Our results showed that the total phosphorus levels reduced 42% after dredging. Similar changes for Hg, Zn, As Pb, Cd, Cu, Cr, and Ni were observed, with reduction percentages of 97.0, 93.1, 82.6, 63.9, 52.7, 50.1, 32.0, and 23.6, respectively, and the quality of sediment improved based on the criterion of Sediment Quality Guidelines by USEPA and contamination degree values (Cd) decreased significantly (paired t-test, p < 0.05). Unexpectedly, the TN increased 49% after dredging compared to before dredging. Findings from the study demonstrated that the environmental dredging was an effective mechanism for removal of total phosphorus and heavy metals from South Lake. Nevertheless, the dredging was ineffective to remove total nitrogen from sediment. We conclude that the reason for the observed increase in TN after dredging was likely ammonia release from the sediment impairing the dredging effectiveness.  相似文献   

18.
采用澳大利亚源流域水量水质模型模拟东山小流域内2001-2010年9种不同土地利用类型产生的降雨径流及总氮和总磷的污染负荷,模拟结果为:流域内多年平均径流量为6 150万m3/a,总氮输出负荷为270 t/a,总磷负荷为22 t/a。模拟结果表明:水产养殖塘和高地茶果树是东山地区主要的营养物来源。通过三个情景方案的模拟,说明当地环境管理方案可以有效地削减入湖的营养负荷,其中第二个情景方案的削减量最大,总氮和总磷负荷分别削减了18%和25%。  相似文献   

19.
ABSTRACT: Erosion from construction sites significantly affects water quality in receiving streams. A rainfall simulator was used to evaluate the effectiveness of different methods for controlling erosion from construction sites. Erosion control methods investigated included dry and liquid applications of polyacrylamide (PAM), hydroseed, and straw mulch. Fertilizer was also applied to each plot to examine the effectiveness of the methods in reducing nutrient losses in runoff. Runoff samples were analyzed for total suspended solids (TSS), nitrate, total Kjeldahl nitrogen (TKN), ammonium, total phosphorus (TP), and orthophosphate. Among all treatments investigated, straw mulch was the most effective treatment for controlling TSS and nutrient losses during short term and long term simulations. The low liquid PAM (half the recommended PAM) treatment resulted in the highest reduction in runoff, TSS bound nitrogen, and total nitrogen (TN) concentrations and loadings. The study results indicate that a high application rate (twice the recommended rate) of PAM could actually increase runoff and TSS losses. At a low application rate, both liquid and dry PAM were effective in reducing TSS and nutrient losses in runoff. However, application of the liquid form of PAM to construction sites is more practical and perhaps more economical than applying the PAM in the dry form.  相似文献   

20.
ABSTRACT: Concentrations of total nitrogen, total phosphorus, and total organic carbon in the Loxahatchee River estuary decreased with increasing salinity in a manner indicating that mixing and dilution of freshwater by seawater was the primary process controlling the down-stream concentrations of nutrients. Most of the nutrients in the surface freshwater inflows entered the estuary from five major tributaries; however, about 10 percent of the total nitrogen and 32 percent of the total phosphorus were from urban stormwater runoff. The input of nutrients was highly seasonal and storm related. During a 61-day period of above average rainfall that included Tropical Storm Dennis, the major tributaries discharged 2.7 metric tons of total phosphorus, 75 metric tons of total nitrogen, and 1,000 metric tons of organic carbon to the estuary. This period accounted for more than half of the total nutrient load from the major tributaries during the 1981 water year (October 1, 1980, through September 30, 1981). Inorganic phosphorus and nitrogen increased relative to total phosphorus and nitrogen during storm runoff. Nutrient yield from the basin, expressed as grams per square meter of basin area, was relatively low. However, because the basin area (544 square kilometers) is large compared with the volume of the estuary, the basin might be expected to contribute significantly to estuarine enrichment were it not for tidal flushing. Approximately 60 percent of the total volume of the estuary is flushed on each tide. Because the estuary is well flushed, it probably has a large tolerance for nutrient loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号