首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Figaro-type gas sensor system was investigated for the monitoring of volatile organic contaminants (VOC) in the exhaust gas from a soil vapor extraction (SVE) process. Benzene, toluene, ethyl benzene and xylene (BTEX), and their mixtures, were tested as representative contaminants. Reasonably good correlation factors >0.98 were obtained between the GC analyses and the sensor responses for each component, and for the total gas concentrations. Although the composition of the exhaust gas from SVE process, as well as the amount of each component, change with time, the sensor can be used to estimate the residual amount of contaminants by measuring the total concentrations in the exhaust gas. The sensor can be utilized as a valuable tool for the monitoring of SVE process by indicating when the operation to remediate a contaminated site should be stopped. The proposed ceramic gas sensor system may be a good alternative to existing methods, because it can satisfy the essential monitoring necessities of SVE processes, and has many advantages over other fully equipped instrumentation, as a cost-effective device, with long-term monitoring stability.  相似文献   

2.
The objectives of this work were: (1) to identify an isotherm model to relate the contaminant contents in the gas phase with those in the solid and non-aqueous liquid phases; (2) to develop a methodology for the estimation of the contaminant distribution in the different phases of the soil; and (3) to evaluate the influence of soil water content on the contaminant distribution in soil. For sandy soils with negligible contents of clay and natural organic matter, contaminated with benzene, toluene, ethylbenzene, xylene, trichloroethylene (TCE), and perchloroethylene (PCE), it was concluded that: (1) Freundlich’s model showed to be adequate to relate the contaminant contents in the gas phase with those in the solid and non-aqueous liquid phases; (2) the distribution of the contaminants in the different phases present in the soil could be estimated with differences lower than 10% for 83% of the cases; and (3) an increase of the soil water content led to a decrease of the amount of contaminant in the solid and non-aqueous liquid phases, increasing the amount in the other phases.  相似文献   

3.
Biodegradation has been identified as a major loss process for organic contaminants in soils and, as a result, microbial strategies have been developed for the remediation of contaminated land. Prediction of the biodegradable fraction would be important for determining bioremediation end-points in the clean-up of contaminated land. The aim of this study was to investigate the ability of a cyclodextrin extraction to predict the extent to which polycyclic aromatic hydrocarbons (PAHs) would be degraded microbiologically in field contaminated soils; further testing the robustness and reproducibility of this extraction in chemically complex systems. Dichloromethane and hydroxypropyl-beta-cyclodextrin (HPCD) extractable fractions were measured together with the PAH biodegradable fraction in each of the six field contaminated soils. The amounts of PAHs degraded by the catabolic activity of the indigenous microflora in each of the soils were correlated with HPCD-extractable PAH concentrations. The regressions showed that the amounts of lower molecular weight PAHs extracted by the HPCD were not significantly (P > 0.05) different to the amounts that were degraded. However, higher molecular weight PAHs that were extracted by HPCD did differ significantly (P < 0.05) from the amounts degraded. Although the HPCD extraction did overestimate the microbially degradable fraction of the higher molecular weight PAHs, overall the correlations between the HPCD extractable fraction and the microbially degradable fraction were very close, with mean values of the slope of line for the six soils equalling 1. This study further describes the robust and reproducible nature of the aqueous-based soil extraction technique reliably measuring the extent to which PAHs will be microbially degraded in soil.  相似文献   

4.
The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.  相似文献   

5.
The remediation of the Thala Valley landfill, Casey Station, East Antarctica, is part of efforts to clean-up contaminated sites associated with the Australian Antarctic Program. These sites, ranging from abandoned rubbish dumps to fuel spills, are contaminated principally with metals and petroleum hydrocarbons. Remediation success depends on accurate, cost-effective and timely--fit-for-purpose--chemical analysis of soil and water samples from the site, which is required to guide excavation, the in situ or off-site treatment and disposal of contaminated material, and to validate satisfactory remediation. Owing to the remote location of Antarctica, it is necessary to carry out chemical analyses on-site. Waste and soil contaminated with Pb, Zn, Cd, and Cu were excavated from Thala Valley for removal to Australia, treatment and disposal. Analysis of total metal concentrations in soil was performed at Casey Station with a transportable energy dispersive X-ray fluorescence (EDXRF) spectrometer. Soil samples were prepared using a simple size-fractionation method to expedite sample throughput. A method for assessing contaminant mobility in solid waste (toxicity characteristic leaching procedure, TCLP) was also used to characterise soil. Although this was more labour-intensive and time-consuming than the total metals analysis, it was of great utility because leachable metals were often significant determinants in the assessment of contaminated soil. The combined data helped managers during remediation, directing excavation and allowing waste to be classified for treatment and disposal before its return to Australia.  相似文献   

6.
石油污染场地土壤修复技术及工程化应用   总被引:2,自引:0,他引:2       下载免费PDF全文
在分析当前我国土壤受石油污染的状况基础上,介绍目前修复石油污染场地土壤的技术,包括物理修复、化学修复和生物修复等.并对各种技术的修复原理、研究进展、优缺点及其发展趋势进行了综述,结合我国的研究现状与工作基础对该领域今后的研究方向与重点进行了展望.  相似文献   

7.
In order to establish cost-effective monitoring strategies for soil vapor extraction (SVE), a simplified model for multi-component mass transfer of a complex liquid mixture in porous media and gas sensor are proposed and experimentally evaluated. The basic task for the cost-effective monitoring of SVE is to decide how to predict the performances of venting systems in terms of the contaminant vapor removal rate and the time required to accomplish the clean-up specification. The method includes classifying of individual components of a complex mixture on the basis of gas chromatographic (GC) profile and treating each resulting group as a pseudo-single compound. BTEX components of gasoline were selected for model input and the remainders were divided into 4 groups based on their GC retention times. The model proposed in this study is capable of predicting with accuracy volatilization behaviors of gasoline components in soil and the gas sensor (FIGARO TGS 823) was tested by GC-FID to toluene and TPH-GRO(Total Petroleum Hydrocarbon-Gasoline Range Organics) gas samples. A VOC gas sensor was developed which recognizes TPH-GRO concentrations between 250 and 50 ppm. The developed gas sensor test and proposed model can be used as a valuable tool for the cost-effective monitoring for SVE systems.  相似文献   

8.
The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).  相似文献   

9.
土壤污染修复技术研究进展   总被引:3,自引:0,他引:3  
总结了当前针对污染土壤的物理化学、生物及联合修复技术研究进展,归纳了纳米材料、生物炭和表面活性剂等新兴修复材料的优缺点及应用情况。提出今后的研究方向为强化生物修复技术,开展联合修复技术、复合材料修复技术及土壤修复技术风险防范研究。  相似文献   

10.
Phytoremediation is a well-known promising alternative to conventional approaches used for the remediation of diffused and moderated contaminated soils. The evaluation of the accumulation, availability, and interactions of heavy metals in soil is a priority objective for the possible use of phytoremediation techniques such as phytoextraction and phytostabilization. The soils used in this work were collected from a number of sites inside a protected area in the Apulia region (Southern Italy), which were contaminated by various heavy metals originated from the disposal of wastes of different sources of origin. Soils examined contained Cd, Cr, Cu, Ni, Pb, and Zn in amounts exceeding the critical limits imposed by EU and Italian laws. However, the alkaline conditions, high organic matter content, and silty to silty loamy texture of soils examined would suggest a reduced availability of heavy metals to plants. Due to the high total content but the low available fraction of heavy metals analyzed, especially Cr, phytoextraction appears not to be a promising remediation approach in the sites examined, whereas phytostabilization appears to be the best technique for metal decontamination in the studied areas.  相似文献   

11.
In May 2008, an accidental damage of a Nigerian National Petroleum Corporation (NNPC) pipeline occurred in Ijegun area of Lagos, Nigeria, resulting in oil spillage and consequent contamination of the environment. The residual concentration of the total hydrocarbon (THC) and benzene, toluene, ethylbenzene, and xylene (BTEX) in the groundwater and soil was therefore investigated between March 2009 and July 2010. Results showed elevated THC mean levels in groundwater which were above the World Health Organization maximum admissible value of 0.1 mg/l. THC values as high as 757.97 mg/l in groundwater and 402.52 mg/l in soil were observed in March 2009. Pronounced seasonal variation in the concentration of THC in groundwater and soil samples show that there was significant (P?<?0.05) difference in the measured concentration of THC between each season (dry and wet), with the highest being in the dry season and between the years 2009 and 2010. Significant hydrocarbon contamination, 500 m beyond the explosion site and 25 months after the incident, was observed revealing the extent of the spillage of petroleum products. The highest concentrations of 16.65 μg/l (benzene), 2.08 μg/l (toluene), and 4864.79 μg/l (xylene) were found in stations within the 100 m buffer zone. Most of the samples of groundwater taken were above the target value of 0.2 μg/l set for BTEX compounds by the Environmental Guidelines and Standards for Petroleum Industry in Nigeria. The level of hydrocarbon in the impacted area calls for concern and remediation of the area is urgently needed to reduce further negative impact on the ecosystem.  相似文献   

12.
A method based on headspace (HS) sampling coupling with portable gas chromatography (GC) with photo ionization detector (PID) was developed for rapid determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in soils. Optimal conditions for HS gas sampling procedure were determined, and the influence of soil organic matter on the recovery of BTEX from soil was investigated using five representative Chinese soils. The results showed that the HS-portable-GC-PID method could be effectively operated at ambient temperature, and the addition of 15 ml of saturated NaCl solution in a 40-ml sampling vial and 60 s of shaking time for sample solution were optimum for the HS gas sampling procedure. The recoveries of each BTEX in soils ranged from 87.2 to 105.1 %, with relative standard deviations varying from 5.3 to 7.8 %. Good linearity was obtained for all BTEX compounds, and the detection limits were in the 0.1 to 0.8 μg kg?1 range. Soil organic matter was identified as one of the principal elements that affect the HS gas sampling of BTEX in soils. The HS-portable-GC-PID method was successfully applied for field determination of benzene and toluene in soils of a former chemical plant in Jilin City, northeast China. Considering its satisfactory repeatability and reproducibility and particular suitability to be operated in ambient environment, HS sampling coupling with portable GC-PID is, therefore, recommended to be a suitable screening tool for rapid on-site determination of BTEX in soils.  相似文献   

13.
重金属污染土壤及场地的植物修复技术发展与应用   总被引:4,自引:0,他引:4       下载免费PDF全文
重金属污染土壤及场地的治理工作迫在眉睫,植物修复技术以其成本低、不破坏土壤生态环境、无二次污染、易被公众接受等优点,受到了学术界的广泛关注.近年来,国内外在植物修复技术的植物资源筛选、调控技术、修复植物产后处理等方面进行了广泛的研究.植物修复已经从实验室阶段走向了田间示范和推广应用阶段.现就近年来植物修复技术在重金属污...  相似文献   

14.
地下土壤、水中DNAPLs污染的修复技术研究进展   总被引:1,自引:1,他引:1  
综述了国内外地下土壤、含水层DNAPLs污染的迁移机理及其修复技术研究进展,对该领域的研究前景做了展望.  相似文献   

15.
Monitoring of heavy metal contamination plume in soils can be helpful in establishing strategies to minimize its hazardous impacts to the environment. The objective of this study was to apply a new approach of visualization, based on tridimensional (3D) images, of pseudo-total (extracted with concentrated acids) and exchangeable (extracted with 0.5 mol L?1 Ca(NO3)2) lead (Pb) concentrations in soils of a mining and metallurgy area to determine the spatial distribution of this pollutant and to estimate the most contaminated soil volumes. Tridimensional images were obtained after interpolation of Pb concentrations of 171 soil samples (57 points × 3 depths) with regularized spline with tension in a 3D function version. The tridimensional visualization showed great potential of use in environmental studies and allowed to determine the spatial 3D distribution of Pb contamination plume in the area and to establish relationships with soil characteristics, landscape, and pollution sources. The most contaminated soil volumes (10,001 to 52,000 mg Pb kg?1) occurred near the metallurgy factory. The main contamination sources were attributed to atmospheric emissions of particulate Pb through chimneys. The large soil volume estimated to be removed to industrial landfills or co-processing evidenced the difficulties related to this practice as a remediation strategy.  相似文献   

16.
An appropriate sampling method that provides for the representation of the collected material and the reliability of results plays a crucial role in environmental monitoring. This is especially important in soil quality investigations on sites with a differentiated surface microrelief, as in the case of afforested post-arable soils that have a specific, deep furrow-and-ridge microrelief. The present research was carried out on three sites afforested with pine (4-, 8-, and 15-year-old stands) located near a large tailings pond collecting the wastes from copper ore enrichment. Soils were sampled at depths of 0–10 and 0–30 cm, separately in the furrows and ridges. The “wide-furrow plow” contributed to the spatial variation in soil properties, including higher pH, organic carbon, and Cu content in soils of the ridges. The difference in Cu content in the ridges and furrows initially reached 300 %, and decreased with the decline of the furrow-and-ridge microrelief to 60 % at 15 years after the plowing. Observed rate of the furrow shallowing allows for an estimation of the time necessary for the complete disappearance of the furrow-and-ridge microrelief and associated variability in soil properties to at least 30–40 years after the plowing. Afforestation plowing had little impact on the Zn variability which was not influenced by the emissions from the tailings pond. Soil sampling in contaminated sites with furrow-and-ridge microrelief must collect equal quantities of soil samples from both furrows and ridges to allow a reliable estimation of the mean trace elements’ concentration.  相似文献   

17.
Nickel is a heavy metal which is a stable soil pollutant which is difficult to remediate. An attempt to reduce its impact on the environment can be made by changing its solubility. The right level of hydrogen ions and the content of mineral and organic colloids are crucial in this regard. Therefore, methods to neutralise heavy metals in soil are sought. There are no reports in the literature on the possibility of using minerals in the detoxication of a soil environment contaminated with metals. It is important to fill the gap in research on the effect of zeolites on the microbiological, biochemical and physicochemical properties of soils under pressure from heavy metals. Therefore, a pot experiment was conducted on two soils which examined the effect of various levels of contamination of soil with nickel on the activity of soil enzymes, physical and chemical properties and growth and development of plants. An alleviating effect of zeolite Bio.Zeo.S.01 on the negative impact of nickel on the soil and a plant (oats) was examined. The enzyme activity and the oat yield were found to be significantly and negatively affected by an excess of nickel in the soil, regardless of the soil type. The metal was accumulated more in the oat roots than in the above-ground parts. An addition of zeolite decreased the level of accumulation of nickel in oats grown only on sandy-silty loam. Zeolite Bio.Zeo.S.01 used in the study only slightly alleviated the negative effect of nickel on the biochemical properties of soil. Therefore, its usability in the remediation of soil contaminated with nickel is small.  相似文献   

18.
The characteristics of three neighboring soils from the NE of Turkey were evaluated in order to elucidate the effect of different land-use management on the soil aggregate stability and microbial biomass in Galyan-Atasu dam watershed. Three experimental sites corresponding to three land uses were selected. The first site is a hazelnut orchard (agriculture), the second site is a forest dominated by mature coniferous trees, and the third site is grassland. Soil aggregate stability values for the 1–2-mm aggregates increased from forest (lowest) to agriculture (highest) in the current study. The percentage of clay was highest in agriculture soils with 33.57 %, and overall stability values increased according to soil clay content. The lower aggregate stability in the forest soils probably reflects the highly silty texture soils with 11.95 % compared to agriculture and grassland. However, in our study, there were no significant correlations between aggregate stability and organic C concentrations either in cultivated or forested soils. Aggregate stability depended more on the organic matter content when the organic matter content was greater than 50 or 60 mg g?1. Below that threshold, aggregate stability may be mainly related to clay content. Furthermore, the results confirmed that higher percentages of Cmic/Corg in agricultural soils are the result of more labile organic substrates maintained in the soil, allowing a higher microbial biomass C per unit of soil organic C. This work gives a better understanding of the relationships between land-use type and soil aggregation and allows to know the soil response to different types of management in humid environments.  相似文献   

19.
High ethyl-benzene and total petroleum hydrocarbons (TPHs) were found in the soil samples and groundwater samples during a site environmental assessment for an old paint factory in the city Changchun, Jilin province of China. The target old paint plant had been in operation for near 30 years by manufacturing resin and house paint. Driving force for this study was to identify potential environmental contamination existing in this paint factory which is located next to a new resident area under construction. The assessment result would be used as baseline environmental data input for remediation plan when the factory site will be changed into potential resident area in near future. The analytical data from the soil samples from different area of the factory which had high exposure to operation showed that solid waster storage area was contaminated with high heavy metals (Cd, Pb, and Zn) and waster paint storage areas were contaminated with ethyl-benzene, xylene and C9-C30 aromatic hydrocarbon solvent. The analytical data from the groundwater samples from different area of the factory showed that resin plant area and waster paint storage areas were contaminated with high concentration of naphthalene, ethyl-benzene and xylene which exceed the reference standard. Remediation action is recommended.  相似文献   

20.
Imidacloprid is extensively used on a broad range of crops worldwide as seed dressing, soil treatment, and foliar application. Hence, the degradation potential of bacterial strains from sugarcane-growing soils was studied in liquid medium for subsequent use in bioremediation of contaminated soils. The microbe cultures degrading imidacloprid were isolated and enriched on Dorn’s broth containing imidacloprid as sole carbon source maintained at 28 °C and Bacillus alkalinitrilicus showed maximum potential to degrade imidacloprid. Clay loam soil samples were fortified with imidacloprid at 50, 100, and 150 mg kg?1 along with 45?×?107 microbe cells under two opposing sets of conditions, viz., autoclaved and unautoclaved. To study degradation and metabolism of imidacloprid under these two conditions, samples were drawn at regular intervals of 7, 14, 28, 35, 42, 49, and 56 days. Among metabolites, three metabolites were detected, viz., 6-chloronicotinic acid, nitrosimine followed by imidacloprid-NTG under both the conditions. Total imidacloprid residues were not found to follow the first-order kinetics in both types of conditions. This paper reports for the first time the potential use of pure cultures of soil-isolated native bacterium B. alkalinitrilicus and also its use along with natural soil microflora for remediation of imidacloprid-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号