首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatially variable refuse gas permeability and landfill gas (LFG) generation rate, cracking of the soil cover, and reduced refuse gas permeability because of liquid addition can all affect CH4 collection efficiency when intermediate landfill covers are installed. A new gas collection system that includes a near-surface high permeability layer beneath the landfill cover was evaluated for enhancing capture of LFG and mitigating CH4 emissions. Simulations of gas transport in two-dimensional domains demonstrated that the permeable layer reduces CH4 emissions up to a factor of 2 for particular spatially variable gas permeability fields. When individual macrocracks formed in the cover soil and the permeable layer was absent, CH4 emissions increased to as much as 24% of the total CH4 generated, double the emissions when the permeable layer was installed. CH4 oxidation in the cover soil was also much more uniform when the permeable layer was present: local percentages of CH4 oxidized varied between 94% and 100% across the soil cover with the permeable layer, but ranged from 10% to 100% without this layer for some test cases. However, the permeable layer had a minor effect on CH4 emissions and CH4 oxidation in the cover soil when the ratio of the gas permeability of the cover soil to the mean refuse gas permeability ?0.05. The modeling approach employed in this study may be used to assess the utility of other LFG collection systems and management practices.  相似文献   

2.
The influence of atmospheric pressure on landfill methane emissions   总被引:3,自引:0,他引:3  
Landfills are the largest source of anthropogenic methane (CH4) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH4 emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH4 emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m3 CH4 min(-1). A simple regression model of our results was used to calculate an annual emission rate of 8.4 x 10(6) m3 CH4 year(-1). These data, along with CH4 oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH4 generation at this landfill. A reported gas collection rate of 7.1 x 10(6) m3 CH4 year(-1) and an estimated annual rate of CH4 oxidation by cover soils of 1.2 x 10(6) m3 CH4 year(-1) resulted in a calculated annual CH4 generation rate of 16.7 x 10(6) m3 CH4 year(-1). These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential.  相似文献   

3.
The impact of wind turbulence-induced pressure fluctuations at the soil surface on landfill gas transport and emissions to the atmosphere at an old Danish landfill site was investigated using stochastic modelling combined with soil property and gas transport data measured at the site. The impacts of soil physical properties (including air permeability and volumetric water content) and wind-induced pressure fluctuation properties (amplitude and temporal correlation) on landfill gas emissions to the atmosphere were evaluated. Soil-air permeability and pressure fluctuation amplitude were found to be the most important parameters. Wind-induced gas emissions were further compared with gas emissions caused by diffusion and by long-term pressure variations (due to passing weather systems). Here diffusion and wind-induced gas transport were found to be equally important with wind-induced gas transport becoming the most important at lower soil-air contents.  相似文献   

4.
The potential of a lateritic soil and a marine clay, typical of those found in hot and humid climatic regions, was assessed for use as a landfill liner material. A series of tests were conducted - physical and chemical, batch adsorption, column, hydraulic conductivity, etc., - to evaluate the heavy metal sorption capacity, chemical compatibility of hydraulic conductivity, and transport parameters of the soils. Experimental results showed that the marine clay had better adsorption capacity than that of the lateritic soil and that its hydraulic conductivity was an order of magnitude lower. In addition, the hydraulic conductivities of both soils when permeated with low concentration heavy metal solutions were below 1x10(-7)cm/s. When permeated with Cr, Pb, Cd, Zn, and Ni solutions, the retardation factors of the lateritic soil and the marine clay ranged from 10 to 98 and 37 to 165, respectively, while the diffusion coefficients ranged from 1.0x10(-5) to 7.5x10(-6) and 3.0 to 9.14x10(-7)cm2/s, respectively. For both soils, Cr and Pb were retained relatively well, while Cd, Zn, and Ni were more mobile. The marine clay had higher retardation factors and lower diffusion coefficients, and its hydraulic conductivity was more compatible with Cr solution, than that of the lateritic soil. In general, the properties of the marine clay indicate that it has significant advantages over the lateritic soil as landfill liner material.  相似文献   

5.
Water flows were analysed for the filling phase and the first 4 years after closure of two types of full-scale landfill cells: 'special cells' containing mostly fly ash from municipal solid waste (MSW) incineration disposed with other special/hazardous waste, and 'biocells' (biological cells) containing co-disposed MSW and food industry sludge. The landfill cells were constructed about -1.5 m above sea level (masl) at Lomma Bay, southern Sweden. The hydrological effects of water intrusion into the special cells from surroundings and sludge moisture within the biocells were studied. HELP modelling of hydrological processes predicted delay in peaks of leachate generation from uncovered special cells following rain, which was not confirmed. Faster leachate production as a response to rainfall from special cells than from biocells was observed. It was inferred that special waste has more intensive channelling, lower water absorption and higher hydraulic conductivity than mixtures of sludge/MSW. To avoid convergence problems in modelling uncovered special cells, the use of a 5 cm deep top layer with saturated hydraulic conductivity 1.7 x 10(-3) cm s(-1), porosity 0.437, and field capacity 0.105, is suggested.  相似文献   

6.
Management and prediction of the movement and distribution of fluids in large landfills is important for various reasons. Bioreactor landfill technology shows promise, but in arid or semi-arid regions, the natural content of landfilled waste may be low, thus requiring addition of significant volumes of water. In more humid locations, landfills can become saturated, flooding gas collection systems and causing sideslope leachate seeps or other undesirable occurrences. This paper compares results from two different approaches to monitoring water in waste. At the Brock West Landfill in eastern Canada, positive pore pressures were measured at various depths in saturated waste. The downward seepage flux through the waste is known, thus the vertical saturated hydraulic conductivity of the waste at this landfill was determined to be 3 × 10(-7)cm/s. By comparison, the Spadina Landfill in western Canada is predominantly unsaturated. The infiltration of moisture into the waste was measured using moisture sensors installed in boreholes which determined arrival time for moisture fronts resulting from major precipitation events as well as longer-term change in moisture content resulting from unsaturated drainage during winter when frozen ground prevented infiltration. The unsaturated hydraulic conductivity calculated from these data ranged from approximately 10(-6)cm/s for the slow winter drainage in the absence of significant recharge to 10(-2)cm/s or higher for shallow waste subject to high infiltration through apparent preferential pathways. These two very different approaches to field-scale measurements of vertical hydraulic conductivity provide insight into the nature of fluid movement in saturated and unsaturated waste masses. It is suggested that the principles of unsaturated seepage apply reasonably well for landfilled waste and that the hydraulic behavior of waste is profoundly influenced by the nature and size of voids and by the degree of saturation prevailing in the landfill.  相似文献   

7.
Kinetics of microbial landfill methane oxidation in biofilters   总被引:1,自引:0,他引:1  
A methane oxidizing biofilter system fitted to the passive venting system of a harbor sludge landfill in Germany was characterized with respect to the the methanotrophic population, methane oxidizing capacity, and reaction kinetics. Methanotrophic cell counts stabilized on a high level with 1.3 x 10(8) to 7.1 x 10(9) cells g dw(-1) about one year after first biofilter operation, and a maximum of 1.2 x 10(11) cells g dw(-1). Potential methane oxidizing activity varied between 5.3 and 10.7 microg h(-1) g dw(-1). Cell numbers correlated well with methane oxidation activities. Extrapolation of potential activities gave methane removal rates between 35 and 109 g CH4 h(-1) m(-3), calculated for 30 degrees C. Optimum temperature was 38 degrees C for freshly sampled biofilter material and 22 degrees C for a methanotrophic enrichment culture grown at 10 degrees C incubation temperature. Substrate kinetics revealed the presence of a low-affinity methane oxidizing community with a high Vmax of 1.78 micromol CH4 h(-1) g ww(-1) and a high K(M) of 15.1 microM. K(MO2) for methane oxidation was 58 microM. No substantial methane oxidizing activity was detected below 1.7-2.6 vol.-% O2 in the gaseous phase. Methane deprivation led to a decrease in methane oxidation activity within 5-9 weeks but could still be detected after 25 weeks of substrate deprivation and was fully restored within 3 weeks of continuous methane supply. Very high salt loads are leached from the novel biofilter material, expanded clay, yielding electric conductivity values of up to 15 mS cm(-1) in the leachate. Values > 6 mS cm(-1) were shown to depress methane consumption. Water retention characteristics of the material proved to be favourable for methane oxidizing systems with a gas permeable volume of 78% of bulk volume at field capacity water content. Correspondingly, no influence of water content on methane oxidation activity could be detected at water contents between 2.5 and 20 vol.-%.  相似文献   

8.
Deinking by-products (DBP) have been used as alternative cover material for landfills and mine tailings. Since DBP is biodegradable because of its high cellulose and hemicellulose content, a laboratory experimental program was performed to monitor the evolution of biodegradation and changes in the physico-chemical and geotechnical properties of DBP samples submitted to accelerated biodegradation for 1460 days at 38 degrees C. The evolution of gas and leachate production was monitored in terms of both quality and quantity, which allowed for the calculation of mass loss with time. Under the conditions of the tests (no load applied), 19.6% of the mass was lost as gas, whereas 6.1% was leached out. The results show that biodegradation did not significantly alter the compaction behavior of DBP. The void ratio and water content increased significantly, while the volume of the samples slightly decreased. This seem to indicate that the porous structure of the samples was no longer the same after 1460 d of accelerated biodegradation. A slight increase in the relative density indicates that the organic/inorganic matter ratio increased. The results of permeability tests performed with samples at various stages of biodegradation and at various confining stresses show that the saturated hydraulic conductivity of recompacted biodegraded DBP decreased from 7 x 10(-7)cm/s to approximately 2 x 10(-7)cm/s, as biodegradation advanced.  相似文献   

9.
In the present paper, the potential use of lignite fly ash in the control of acid generation from sulphidic tailings disposed of at Lavrion, Greece was studied. Long-term laboratory column kinetic tests were performed on tailings containing 27% S, which were homogeneously mixed with various amounts of fly ash, ranging from 10 to 63% w/w. The drainage quality of the columns was monitored over a test period of 600 days. Chemical and mineralogical characterisation of column solid residues was performed after a 270-day test period. The hydraulic conductivity of the mixtures was also measured to evaluate the potential of fly ash to form a low permeability layer. Based on the results, the addition of fly ash to sulphidic tailings, even at the lower amount, increased the pH of the drainage at values of 8.6-10.0 and decreased the dissolved concentrations of contaminants, mainly Zn and Mn, to values that meet the European regulatory limits for potable water. Higher fly ash addition to tailings, at amounts of 31 and 63% w/w also reduced the water permeability of material from 1.2 x 10(-5) cm/sec to 3 x 10(-7) and 2.5 x 10(-8) m/s, respectively.  相似文献   

10.
Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10m and a fine textured vadose zone thickness of about 5m. Therefore, the fine and coarse textured vadose zones thicker than about 5m and 10m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers.  相似文献   

11.
To make a proper evaluation of gas component movement inside a landfill site, it is important to investigate the different parameters related to gas flow. In this work gas-filled porosity, intrinsic permeability, tortuosity and equivalent pore radius were determined for various packed wastes, such as incineration ash, shredded bulky waste and shredded incombustible waste. These parameters were measured/inferred for samples packed in a column and exposed to a controlled gas flow. The effect of waste conditions, especially the moisture content, on these parameters was also investigated. The intrinsic permeability of such packed wastes was generally in the order of 10(-10) to 10(-9) m2, except for some ash that was one to two orders lower. The tortuosity of waste layer was greater than that of a particulate material and ranged between 2 and 10. The equivalent pore radius was generally in the order of 10(-4) m, which means that gas diffusion is still ordinary in such packed waste layer. The obtained results will be utilized when simulating gas flow inside a landfill site for biogas extraction or site aeration.  相似文献   

12.
This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Miljø. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH4) emissions from leachate systems at Fakse landfill and AV Miljø to measurements of total CH4 emissions, it was found that approximately 47% (351 kg CH4 d?1) and 27% (211 kg CH4 d?1), respectively, of the CH4 emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76 kg CH4 d?1. A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH4 was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure.  相似文献   

13.
Biologically-active landfill cover soils (biocovers) that serve to minimize CH4 emissions by optimizing CH4 oxidation were investigated at a landfill in Florida, USA. The biocover consisted of 50 cm pre-composted yard or garden waste placed over a 10-15 cm gas distribution layer (crushed glass) over a 40-100 cm interim cover. The biocover cells reduced CH4 emissions by a factor of 10 and doubled the percentage of CH4 oxidation relative to control cells. The thickness and moisture-holding capacity of the biocover resulted in increased retention times for transported CH4. This increased retention of CH4 in the biocover resulted in a higher fraction oxidized. Overall rates between the two covers were similar, about 2g CH4 m(-2)d(-1), but because CH4 entered the biocover from below at a slower rate relative to the soil cover, a higher percentage was oxidized. In part, methane oxidation controlled the net flux of CH4 to the atmosphere. The biocover cells became more effective than the control sites in oxidizing CH4 3 months after their initial placement: the mean percent oxidation for the biocover cells was 41% compared to 14% for the control cells (p<0.001). Following the initial 3 months, we also observed 29 (27%) negative CH4 fluxes and 27 (25%) zero fluxes in the biocover cells but only 6 (6%) negative fluxes and 22 (21%) zero fluxes for the control cells. Negative fluxes indicate uptake of atmospheric CH4. If the zero and negative fluxes are assumed to represent 100% oxidation, then the mean percent oxidation for the biocover and control cells, respectively, for the same period would increase to 64% and 30%.  相似文献   

14.
This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m(3). Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10(-10)cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.  相似文献   

15.
Conventional landfill cover systems for municipal solid waste include low-permeability compacted clay barriers to minimize infiltration into the landfilled waste. Such layers are vulnerable in climates where arid to semi-arid conditions prevail, whereby the clay cover tends to desiccate and crack, resulting in drastically higher infiltration, i.e., lower cover efficiency. To date, this phenomenon, which has been reported in field observations, has not been adequately assessed. In this paper, the performance of a cover system solely relying on a clay barrier was simulated using a numerical finite element formulation to capture changes in the clay layer and the corresponding modified hydraulic characteristics. The cover system was guided by USEPA Subtitle-D minimum requirements and consisted of a clay layer underlying a protective vegetated soil. The intrinsic characteristics of the clay barrier and vegetative soil cover, including their saturated hydraulic conductivities and their soil-water characteristic curves, were varied as warranted to simulate intact or "cracked" conditions as determined through the numerical analyses within the proposed methodology. The results indicate that the levels of percolation through the compromised or cracked cover were up to two times greater than those obtained for intact covers, starting with an intact clay hydraulic conductivity of 10(-5)cm/s.  相似文献   

16.
Methane oxidation in a landfill cover with capillary barrier   总被引:6,自引:0,他引:6  
The methane oxidation potential of a landfill cover with capillary barrier was investigated in an experimental plant (4.8 m x 0.8 m x 2.1m). The cover soil consisted of two layers, a mixture of compost plus sand (0.3 m) over a layer of loamy sand (0.9 m). Four different climatic conditions (summer, winter, spring and fall) were simulated. In and outgoing fluxes were measured. Gas composition, temperature, humidity, matrix potential and gas pressure were monitored in two profiles. CH4 oxidation rate within the investigated top cover ranged from 98% to 57%. The minimum was observed for a short time after irrigation. Temperature distribution, gas concentration profiles and lab-scaled batch experiments indicate that before irrigation the highest oxidising activity took place in a depth of about 30 cm. After irrigation the oxidising horizon seemed to migrate upwards since methanotrophic bacteria develop better there due to an adequate supply with oxygen. It can be assumed that the absence of oxygen is one of the most important limiting factors for the CH4 oxidation process. Abrupt cross-overs between horizons of different soil material may lead to zones of increased water saturation and decreased soil respiration.  相似文献   

17.
Management of landfill emissions, i.e., landfill gas (LFG) and landfill leachate, is an important and resource-intensive task. A long-term demonstration pilot, consisting of landfill simulation reactors (LSRs), was used to study the impact of temperature and the applied liquid/solid ratio (L/S ratio) on landfill emissions, characteristics, and trends. This pilot has already run for more than 1000 days since the end of 2004 and will continue to run for some time. The degradation of waste at different temperatures has impacts on the overall degradation degree and on the length of post-closure care required. Higher temperatures accelerated the degradation, but also resulted in higher leachate chemical oxygen demand (COD) and ammonia concentrations, which prolong the aftercare period. Meanwhile, at a given stabilization degree [e.g., 70 l gas/kg waste (dry)], the total leached nitrogen under psychrophilic conditions was 3.5 times that under mesophilic/thermophilic conditions, which resulted in a higher required effort for leachate treatment. The impact of L/S ratio or simulated annual L/S rates was also evaluated. The results show the significance of efficiently obtaining the targeted L/S ratio in order to achieve low landfill emission potential.  相似文献   

18.
This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period.  相似文献   

19.
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH4 loadings up to 300 l CH4/m2 d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC.Methane emissions from the reference lysimeter with the smaller substrate cover (12–52 g CH4/m2 d) were significantly higher than fluxes from the other lysimeters (0–19 g CH4/m2 d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18–26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27–45% of the precipitation).On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH4 emissions, even beyond the time of active aeration.  相似文献   

20.
Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints. Existing studies on mitigation potentials and costs for the waste sector tend to focus on landfill CH4 as the baseline. The commercial recovery of landfill CH4 as a source of renewable energy has been practised at full scale since 1975 and currently exceeds 105 Mt CO2-eq year(-1). Although landfill CH4 emissions from developed countries have been largely stabilized, emissions from developing countries are increasing as more controlled (anaerobic) landfilling practices are implemented; these emissions could be reduced by accelerating the introduction of engineered gas recovery, increasing rates of waste minimization and recycling, and implementing alternative waste management strategies provided they are affordable, effective, and sustainable. Aided by Kyoto mechanisms such as the Clean Development Mechanism (CDM) and Joint Implementation (JI), the total global economic mitigation potential for reducing waste sector emissions in 2030 is estimated to be > 1000 Mt CO2-eq (or 70% of estimated emissions) at costs below 100 US$ t(-1) CO2-eq year(-1). An estimated 20-30% of projected emissions for 2030 can be reduced at negative cost and 30-50% at costs < 20 US$ t(-) CO2-eq year(-1). As landfills produce CH4 for several decades, incineration and composting are complementary mitigation measures to landfill gas recovery in the short- to medium-term--at the present time, there are > 130 Mt waste year(-1) incinerated at more than 600 plants. Current uncertainties with respect to emissions and mitigation potentials could be reduced by more consistent national definitions, coordinated international data collection, standardized data analysis, field validation of models, and consistent application of life-cycle assessment tools inclusive of fossil fuel offsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号