首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Pools of Zn, Cu, Cd and Co in leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analyzed on a bimonthly basis, in a Tagus estuary salt marsh. All the major concentrations were found in the root tissues, being the concentrations in the aboveground organs neglectable for sediment budget proposes, as seen by the low root-aboveground translocation. Metal annual accumulation, root turnovers and cycling coefficients were also assessed. S. maritima showed the higher root turnovers and cycling coefficients for most of the analyzed metals, making this a phytostabilizer specie. By contrast the low root turnover, cycling coefficient and low root necromass generation makes S. perennis the most suitable specie for phytoremediation processes. Although the high amounts of metal return to the sediments, due to root senescence, salt marshes can still be considered sinks of heavy metals, cycling heavy metals mostly between sediment and root.  相似文献   

2.
This work evaluates the role of a plant community in mercury (Hg) stabilization and mobility in a contaminated Portuguese salt marsh. With this aim, the distribution of Hg in below and aboveground tissues, as well as the metal partitioning between cellular fractions (soluble and insoluble) in four different species (Triglochin maritima L., Juncus maritimus Lam, Sarcocornia perennis (Miller) A.J. Scott, and Halimione portulacoides (L.) Aellen) was assessed. Mercury accumulation, translocation and compartmentation between organs and cellular fractions were related to the plant species.Results showed that the degree of Hg absorption and retention was influenced both by environmental parameters and metal translocation/partitioning strategies. Different plant species presented different allocation patterns, with marked differences between monocots (T. maritima and J. maritimus) and dicots (S. perennis, H. portulacoides). Overall, the two monocots, in particular T. maritima showed higher Hg retention in the belowground organs whereas the dicots, particularly S. perennis presented a more pronounced translocation to the aboveground tissues. Considering cellular Hg partitioning, all species showed a higher Hg binding to cell walls and membranes rather than in the soluble fractions. This strategy can be related to the high degree of tolerance observed in the studied species. These results indicate that the composition of salt marsh plant communities can be very important in dictating the Hg mobility within the marsh ecosystem and in the rest of the aquatic system as well as providing important insights to future phytoremediation approaches in Hg contaminated salt marshes.  相似文献   

3.

The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m−2 year−1), low-N (N1: 5 g N m−2 year−1), medium-N (N2: 10 g N m−2 year−1), and high-N (N3: 15 g N m−2 year−1), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3–5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the “priming” effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.

  相似文献   

4.
Nutrient load into the ocean can be retained during the process of plant uptake and sedimentation in marshes along the bay zone. Seasonal variations of biomass and nutrient concentration in three dominated plant assemblages and associated sediments were monitored in this study area to determine effects of salt marsh on nutrient retention. Results showed that plant aboveground biomass displayed a unimodal curve with nutrient concentration generally decreased from spring to winter. Belowground biomass was relatively low during the rapid growth period with nutrient concentration tending to decrease and then increase during this period. Plant total nitrogen (TN) pools are higher than total phosphorus (TP) pools, and both pools showed significant seasonal variations. Water purification coefficients (WPC) of nutrients by plant assimilation were 34.4/17.3, 19.3/24.0, and 5.14/6.04 t/(m2 year) (TN/TP) for Phragmites australis, Spartina alterniflora, and Scirpus mariqueter, respectively. Overall, these results suggest that higher annual plant biomass and nutrient assimilation contribute to greater nutrient retention capacity and accumulation in sediments, thereby enabling reduced eutrophication in transitional waters.  相似文献   

5.
Spartina alterniflora exhibits great invading potential in the coastal marsh ecosystems. Also, nitrogen (N) deposition shows an apparent increase in the east of China. To evaluate CH4 emissions in the coastal marsh as affected by the invasion of S. alterniflora and N deposition, we measured CH4 emission from brackish marsh mesocosms vegetated with S. alterniflora and a native plant, Suaeda salsa, and fertilized with exogenous N at the rates of 0 and 2.7 g N m?2, respectively. Dissolved porewater CH4 concentration and redox potentials in soils as well as aboveground biomass and stem density of plants were also monitored. The averaged rate of CH4 emission during the growing season in the S. alterniflora and S. salsa mesocosms without N application was 0.88 and 0.54 mg CH4 m?2 h?1, respectively, suggesting that S. alterniflora plants significantly increased CH4 emission mainly because of higher plant biomass rather than stem density compared to S. salsa, which delivered more substrates to the soil for methanogenesis. Exogenous N input dramatically stimulated CH4 emission by 71.7% in the S. alterniflora mesocosm. This increase was attributable to enhancement in biomass and particularly stem density of S. alterniflora driven by N application, which transported greater photosynthesis products than oxygen into soils for CH4 production and provided more pathways for CH4 emission. In contrast, there was no significant effect of N fertilization on CH4 emission in the S. salsa mesocosm. Although N fertilization significantly stimulated CH4 production by increasing S. salsa biomass, no significant increase in stem density was observed. This fact, along with the low gas transport capacity of S. salsa, failed to efficiently transport CH4 from wetlands into the atmosphere. Thus we argue that the stimulatory or inhibitory effect of N fertilization on CH4 emission from wetlands might depend on the gas transport capacity of plants and their relative contribution to substrates for CH4 production and oxygen for CH4 oxidation in soil.  相似文献   

6.
The potential of alpine moss-sedge heath to recover from elevated nitrogen (N) deposition was assessed by transplanting Racomitrium lanuginosum shoots and vegetation turfs between 10 elevated N deposition sites (8.2-32.9 kg ha−1 yr−1) and a low N deposition site, Ben Wyvis (7.2 kg ha−1 yr−1). After two years, tissue N of Racomitrium shoots transplanted from higher N sites to Ben Wyvis only partially equilibrated to reduced N deposition whereas reciprocal transplants almost matched the tissue N of indigenous moss. Unexpectedly, moss shoot growth was stimulated at higher N deposition sites. However, moss depth and biomass increased in turfs transplanted to Ben Wyvis, apparently due to slower shoot turnover (suggested to result partly from decreased tissue C:N slowing decomposition), whilst abundance of vascular species declined. Racomitrium heath has the potential to recover from the impacts of N deposition; however, this is constrained by the persistence of enhanced moss tissue N contents.  相似文献   

7.
We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter.  相似文献   

8.
Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils.  相似文献   

9.
In this study two time scales were looked at: a yearlong study was completed, and a 180-day decay experiment was done. Juncus maritimus and Scirpus maritimus have different life cycles, and this seems to have implications in the Hg-contaminated salt marsh sediment chemical environment, namely Eh and pH. In addition, the belowground biomass decomposition rates were faster for J. maritimus, as well as the biomass turnover rates. Results show that all these species-specific factors have implications in the mercury dynamics and sequestration. Meaning that J. maritimus belowground biomass has a sequestration capacity for mercury per square metre approximately 4-5 times higher than S. maritimus, i.e., in S. maritimus colonized areas Hg is more extensively exchange between belowground biomass and the rhizosediment. In conclusion, J. maritimus seems to provide a comparatively higher ecosystem service through phytostabilization (Hg complexation in the rhizosediment) and through phytoaccumulation (Hg sequestration in the belowground biomass).  相似文献   

10.
Ability of salt marsh plants for TBT remediation in sediments   总被引:1,自引:1,他引:0  

Introduction  

The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions.  相似文献   

11.
We analysed growth strategies (biomass allocation, nutrient sequestration and allocation) of heather (Calluna vulgaris) and purple moor-grass (Molinia caerulea) seedlings in monocultures and mixtures in relation to N, P, and N + P fertilisation in a greenhouse experiment in order to simulate a heath’s pioneer phase under high airborne nitrogen (N) loads. N fertilisation increased the total biomass of both species in monocultures. In mixtures, M. caerulea sequestered about 65% of the N applied, while C. vulgaris suffered from N shortage (halving of the total biomass). Thus, in mixtures only M. caerulea will benefit from airborne N loads, and competition will become increasingly asymmetric with increasing N availability. Our results demonstrate that the heath’s pioneer phase is the crucial tipping point at which the competitive vigour of M. caerulea (high belowground allocation, efficient use of belowground resources, shortened reproductive cycles) induces a shift to dominance of grasses under increased N availability.  相似文献   

12.
The effect of nitrogen on biomass production, shoot elongation and relative density of the mosses Pleurozium schreberi, Hylocomium splendens and Dicranum polysetum was studied in a chamber experiment. Monocultures were exposed to 10 N levels ranging from 0.02 to 7.35 g N m−2 during a 90-day period. All the growth responses were unimodal, but the species showed differences in the shape parameters of the curves. Hylocomium and Pleurozium achieved optimum biomass production at a lower N level than Dicranum. Pleurozium had the highest biomass production per tissue N concentration. Tolerance to N was the widest in Dicranum, whereas Hylocomium had the narrowest tolerance. Dicranum retained N less efficiently from precipitation than the other two species, which explained its deviating response. All species translocated some N from parent to new shoots. The results emphasize that the individual responses of bryophytes to N should be known when species are used as bioindicators.  相似文献   

13.
This study investigated changes in diversity of shrub-tree layer, leaf decomposition rates, nutrient release and soil NO fluxes of a Brazilian savanna (cerrado sensu stricto) under N, P and N plus P additions. Simultaneous addition of N and P affected density, dominance, richness and diversity patterns more significantly than addition of N or P separately. Leaf litter decomposition rates increased in P and NP plots but did not differ in N plots in comparison to control plots. N addition increased N mass loss, while the combined addition of N and P resulted in an immobilization of N in leaf litter. Soil NO emissions were also higher when N was applied without P. The results indicate that if the availability of P is not increased proportionally to the availability of N, the losses of N are intensified.  相似文献   

14.
To understand the effect of water level on CH4 emissions from an invasive Spartina alterniflora coastal brackish marsh, we measured CH4 emissions from intermittently and permanently (5 cm water depth) inundated mesocosms with or without N fertilizer added at a rate of 2.7 g N m?2. Dissolved CH4 concentrations in porewater and vertically-profiled sediment redox potential were measured, as were aboveground biomass and stem density of S. alterniflora. Mean CH4 fluxes during the growing season in permanently inundated mesocosms without and with N fertilizer were 1.03 and 1.73 mg CH4 m?2 h?1, respectively, which were significantly higher than in the intermittently inundated mesocosms. This response indicates that prolonged submergence of sediment, up to a water depth of 5 cm, stimulated CH4 release. Inundation did not greatly affect aboveground biomass and stem density, but did significantly reduce redox potential in sediment, which in turn stimulated CH4 production and increased the CH4 concentration of porewater, resulting in higher CH4 emission in the mesocosm. Our data showed that the stimulatory effect of shallow, permanent inundation on CH4 emission in S. alterniflora marsh sediment was due primarily to an improved methanogenic environment rather than an increase in plant-derived substrates and/or the number of gas emission pathways through the plant’s aerenchymal system.  相似文献   

15.
Does nitrogen deposition increase forest production? The role of phosphorus   总被引:2,自引:0,他引:2  
Effects of elevated N deposition on forest aboveground biomass were evaluated using long-term data from N addition experiments and from forest observation plots in Switzerland. N addition experiments with saplings were established both on calcareous and on acidic soils, in 3 plots with Fagus sylvatica and in 4 plots with Picea abies. The treatments were conducted during 15 years and consisted of additions of dry NH4NO3 at rates of 0, 10, 20, 40, 80, and 160 kg N ha−1 yr−1. The same tree species were observed in permanent forest observation plots covering the time span between 1984 and 2007, at modeled N deposition rates of 12-46 kg N ha−1 yr−1. Experimental N addition resulted in either no change or in a decreased shoot growth and in a reduced phosphorus concentration in the foliage in all experimental plots. In the forest, a decrease of foliar P concentration was observed between 1984 and 2007, resulting in insufficient concentrations in 71% and 67% of the Fagus and Picea plots, respectively, and in an increasing N:P ratio in Fagus. Stem increment decreased during the observation period even if corrected for age. Forest observations suggest an increasing P limitation in Swiss forests especially in Fagus which is accompanied by a growth decrease whereas the N addition experiments support the hypothesis that elevated N deposition is an important cause for this development.  相似文献   

16.
Here we investigate the response of soils and litter to 5 years of experimental additions of ammonium (NH4), nitrate (NO3), and ammonia (NH3) to an ombrotrophic peatland. We test the importance of direct (via soil) and indirect (via litter) effects on phosphatase activity and efflux of CO2. We also determined how species representing different functional types responded to the nitrogen treatments. Our results demonstrate that additions of NO3, NH4 and NH3 all stimulated phosphatase activity but the effects were dependent on species of litter and mechanism (direct or indirect). Deposition of NH3 had no effect on efflux of CO2 from Calluna vulgaris litter, despite it showing signs of stress in the field, whereas both NO3 and NH4 reduced CO2 fluxes. Our results show that the collective impacts on peatlands of the three principal forms of nitrogen in atmospheric deposition are a result of differential effects and mechanisms on individual components.  相似文献   

17.
The combined impacts of simulated increased nitrogen (N) deposition (75 kg N ha−1 yr−1) and increasing background ozone (O3) were studied using two mesotrophic grassland species (Dactylis glomerata and Ranunculus acris) in solardomes, by means of eight O3 treatments ranging from 15.5 ppb to 92.7 ppb (24 h average mean). A-Ci curves were constructed for each species to gauge effects on photosynthetic efficiency and capacity, and effects on biomass partitioning were determined after 14 weeks. Increasing the background concentration of O3 reduced the healthy above ground and root biomass of both species, and increased senesced biomass. N fertilisation increased biomass production in D. glomerata, and a significantly greater than additive effect of O3 and N on root biomass was evident. In contrast, R. acris biomass was not affected by high N. The study shows the combined effects of these pollutants have differential implications for carbon allocation patterns in common grassland species.  相似文献   

18.
Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha−1 yr−1. Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen × ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation.  相似文献   

19.
Road traffic contributes considerably to ground-level air pollution and is therefore likely to affect roadside ecosystems. Differences in growth and leaf traits among 13 hybrid aspen (Populus tremula × P. tremuloides) clones were studied in relation to distance from a motorway. The trees sampled were growing 15 and 30 m from a motorway and at a background rural site in southern Finland. Litter decomposition was also measured at both the roadside and rural sites. Height and diameter growth rate and specific leaf area were lowest, and epicuticular wax amount highest in trees growing 15 m from the motorway. Although no significant distance × clone interactions were detected, clone-based analyses indicated differences in genotypic responses to motorway proximity. Leaf N concentration did not differ with distance from the motorway for any of the clones. Leaf litter decomposition was only temporarily retarded in the roadside environment, suggesting minor effects on nutrient cycling.  相似文献   

20.
In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号