首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field-riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000-2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.  相似文献   

2.
ABSTRACT: First order drainage channels originate when the tractive force exerted by flowing water is sufficient to move surface sediment. The amount of runoff available to move sediment is a function of geologic and climatic characteristics. An experimental analysis showed that soils derived from fine grained rocks had lower infiltration rates and higher runoff volume than soils derived from coarser grained rocks in a semi-arid climate. Root density and penetration increased in a more humid climate and increased infiltration rates. The number of first order channels was inversely proportional to the infiltration capacity of the soil. Each first order channel acts as a source area for surface runoff. The distribution of first order channel distances from the gage determines the timing of the delivery of water to the gage. A comparison of the frequency histogram of first order channel distances for drainage basins in Pennsylvania and their hydxographs of runoff from general storms showed marked similarity. This close correspondence indicated the shape of the surface runoff hydrograph and was largely controlled by the distribution of first order channel distances.  相似文献   

3.
Soil cores and suspended sediments were collected within the Old Woman Creek, Ohio (OWC) watershed following a thunderstorm and analyzed for 7Be, 137Cs, and 210Pb activities to compare the effects of till vs. no-till management on soil erosion and sediment yield. The upper reaches of the watershed draining tilled agricultural fields were disproportionately responsible for the majority of the suspended sediment load compared with lower in the watershed (2.0-7.0 metric tons/km2 [Mg/km2] vs. 1.2-2.6 Mg/km2). About 6 to 10 times more sediment was derived from the subbasins that are predominantly tilled (6.8-12.4 Mg/km2) compared with the subbasins undergoing no-till practices (0.5-1.1 Mg/km2). In undisturbed soils the 210Pb activities decreased with movement toward the bottom of the cores to the constant supported 210Pb value at a depth of about 10 cm. There was a subsurface maximum in 137Cs activity within the top 10 cm. In contrast, the 210Pb and 137Cs distributions in soils that are currently or were previously tilled were nearly homogeneous with depth, reflecting continuing or previous mixing by plowing. The activities of 210Pb and 7Be were linearly correlated and were higher in suspended sediments derived from no-till subbasins than those derived from tilled subbasins, indicating that the soil surface is the source of suspended sediment. This study demonstrates that no-till farming results in decreases in soil erosion and decreases in suspended sediment discharges and that those eroded sediments have a radionuclide signature corresponding to the tillage practice and the depth of erosion.  相似文献   

4.
ABSTRACT: The potential for detecting the concentration and type of soils suspended in surface water through remote sensing techniques was investigated by studying the spectral reflectance of two types of soils in suspension. In a large tank filled with 7510 liters of water, 20 levels of suspended sediment (soil) concentration (SSC), ranging from 50 to 1000 mg/l were prepared. A high resolution spectroradiometer was used to measure the reflectance at each SSC level. The reflectance spectra of two contrasting soils were distinct in the visible and near infrared (NIR) portions of the electromagnetic spectrum. The wavelength range between 580–690 nm (visible) was found to be optimal for indicating the type of soil, whereas, the wavelength range between 714–880 (NIR) was found to be appropriate for estimating the concentration of sediment suspended in surface waters.  相似文献   

5.
Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences, such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y, respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences. Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances (ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale.  相似文献   

6.
Management strategies that minimize P transfer from agricultural land to water bodies are based on relationships between P concentrations in soil and runoff. This study evaluated such relationships for surface runoff generated by simulated sprinkler irrigation onto calcareous arable soils of the semiarid western United States. Irrigation was applied at 70 mm h(-1) to plots on four soils containing a wide range of extractable P concentrations. Two irrigation events were conducted on each plot, first onto dry soil and then after 24 h onto wet soil. Particulate P (>0.45 microm) was the dominant fraction in surface runoff from all soils and was strongly correlated with suspended sediment concentration. For individual soil types, filterable reactive P (<0.45 microm) concentrations were strongly correlated with all soil-test P methods, including environmental tests involving extraction with water (1:10 and 1:200 soil to solution ratio), 0.01 M CaCl(2), and iron strips. However, only the Olsen-P agronomic soil-test procedure gave models that were not significantly different among soils. Soil chemical differences, including lower CaCO(3) and water-extractable Ca, higher water-extractable Fe, and higher pH, appeared to account for differences in filterable reactive P concentrations in runoff from soils with similar extractable P concentrations. It may therefore be possible to use a single agronomic test to predict filterable reactive P concentrations in surface runoff from calcareous soils, but inherent dangers exist in assuming a consistent response, even for one soil within a single field.  相似文献   

7.
Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.  相似文献   

8.
Recent work has shown that a significant portion of the total loss of phosphorus (P) from agricultural soils may occur via subsurface drainflow. The aim of this study was to compare the concentrations of different P forms in surface and subsurface runoff, and to assess the potential algal availability of particulate phosphorus (PP) in runoff waters. The material consisted of 91 water-sample pairs (surface runoff vs. subsurface drainage waters) from two artificially drained clayey soils (a Typic Cryaquept and an Aeric Cryaquept) and was analyzed for total suspended solids (TSS), total phosphorus (TP), dissolved molybdate-reactive phosphorus (DRP), and anion exchange resin-extractable phosphorus (AER-P). On the basis of these determinations, we calculated the concentrations of PP, desorbable particulate phosphorus (PPi), and particulate unavailable (nondesorbable) phosphorus (PUP). Some water samples and the soils were also analyzed for 137Cs activity and particle-size distribution. The major P fraction in the waters studied was PP and, on average, only 7% of it was desorbable by AER. However, a mean of 47% of potentially bioavailable P (AER-P) consisted of PPi. The suspended soil material carried by drainflow contained as much PPi (47-79 mg kg-1) as did the surface runoff sediment (45-82 mg kg-1). The runoff sediments were enriched in clay-sized particles and 137Cs by a factor of about two relative to the surface soils. Our results show that desorbable PP derived from topsoil may be as important a contributor to potentially algal-available P as DRP in both surface and subsurface runoff from clayey soils.  相似文献   

9.
Abstract: A study was conducted to determine the effects of three land covers (sunn hemp –Crotalaria juncea, sudex, a sorghum‐sudangrass hybrid –Sorghum bicolor x S. bicolor var. sudanese, and common oats –Avena sativa) planted as vegetative filter strips on the reduction of sediment and nutrient loading of surface runoff within the Kaika‐Waialua watershed on the island of Oahu, Hawaii. Runoff samples were collected and analyzed for total suspended solids (TSS), total dissolved solids (TDS), phosphorous, and three forms of nitrogen (nitrate, ammonium, total nitrogen). Study results show that during seven out of 10 runoff events, the three cover crop treatments significantly reduced TSS as compared to the fallow treatment. Average removal efficiencies were 85, 77, and 73% for oats, sunn hemp, and sudex, respectively, as compared to the fallow treatment. Nutrient concentrations were low with phosphorous concentrations, lower than 1 (μg/ml) for all treatments, and total nitrogen (TN) concentrations below 7 (μg/ml) except in the sunn hemp treatment, where TN concentrations were less than 10 (μg/ml). Results of analysis of TDS showed that the cover crop treatments did not decrease dissolved solids concentrations in comparison with the fallow treatment. Analysis of nutrient concentrations in runoff samples did not detect any significant decreases in phosphorous, nitrogen, ammonium, or TN concentrations in comparison to the fallow treatment. However, a significant increase in TN concentrations in the sunn hemp treatment was detected and showed the nitrogen fixing capacity of sunn hemp. No treatment effects on runoff volume were detected, and runoff volumes were directly correlated with rainfall amounts showing no crops significantly impacted soil infiltration rates. These results were attributed to extremely low soil hydraulic conductivities (0.0001‐7 cm/day at the soil surface, 15 and 30 cm below the soil surface). This study showed that cover crops planted as vegetative filters can effectively reduce sediment loads coming from idle and fallow fields on moderately steep volcanically derived highly weathered soils.  相似文献   

10.
Abstract: Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land‐use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest region of southeastern Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un‐mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds, and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds were analyzed using Monte Carlo mass balance un‐mixing and it was found that: δ15N showed the ability to differentiate streambank erosion and surface soil erosion; and δ13C showed the ability to differentiate soil organic matter and geogenic organic matter. Results from the analyses suggest that streambank erosion downstream of surface coal mining sites is an especially significant source of sediment in coal mining disturbed watersheds. Further, the results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes. The dual‐isotope technique provides a useful method for further investigation of the impact of surface coal mining in the uplands of the watershed upon the geomorphologic state of the channel and the source of organic matter in aquatic systems impacted by surface coal mining.  相似文献   

11.
Cropping is one of the many industries contributing to the excessive loading of nitrogen (N) and phosphorus (P) to rivers and lakes in Australia. Nitrogen and P exports from cropping systems have not been systematically investigated to the same extent as those from other agricultural sectors, such as dairy pastures. Therefore, this review relies heavily on information derived from agronomy and other fundamental studies on soil-nutrient interactions to determine the potential for nutrient export from high rainfall zone (HRZ) cropping. There is a great deal of variation in environmental and management strategies across cropping in the HRZ, which suggests that nutrient exports could occur under a range of scenarios. The potential for exports is therefore discussed within a conceptual framework of nutrient sources, mechanisms for mobilization, and transport pathways in HRZ cropping. Transport refers to nutrient movement by flowing water after it has been mobilized, and export refers to the transfer of nutrients from one landscape compartment (e.g., a soil) to another (e.g., a stream or lake). The transport of nutrients from HRZ cropping can occur through surface and/or subsurface pathways depending on factors such as landform and infiltration and nutrient sorption characteristics of the soil profile. Surface pathways are likely to be more significant for phosphorus. For N, subsurface movement is likely to be as significant as surface movement because nitrates are generally not bound by most soils. Information about mechanisms of nutrient mobilization is essential for developing management strategies to control nutrient exports from HRZ cropping.  相似文献   

12.
The sorption of 2,4-D and glyphosate herbicides in soil was quantified for 287 surface soils (0-15 cm) collected in a 10 x 10 m grid across a heavily eroded, undulating, calcareous prairie landscape. Other variables that were determined included soil carbonate content, soil pH, soil organic carbon content (SOC), soil texture, soil loss or gain by tillage and water erosion, and selected terrain attributes and landform segments. The 2,4-D sorption coefficient (Kd) was significantly associated with soil carbonate content (-0.66; P < 0.001), soil pH (-0.63; P < 0.001), and SOC (0.47; P < 0.001). Upper slopes were strongly eroded and thus had a significantly greater soil carbonate content and less SOC compared with lower slopes that were in soil accumulation zones. The 2,4-D Kd was almost twice as small in upper slopes than in lower slopes. The 2,4-D Kd was also significantly associated with nine terrain attributes, particularly with compounded topographic index (0.59; P < 0.001), gradient (-0.48; P < 0.001), mean curvature (-0.43; P < 0.001), and plan curvature (-0.42 P < 0.001). Regression equations were generated to estimate herbicide sorption in soils. The predicted power of these equations increased for 2,4-D when selected terrain attributes were combined with soil properties. In contrast, the variation of glyphosate sorption across the field was much less dependent on our measured soil properties and calculated terrain attributes. We conclude that the integration of terrain attributes or landform segments in pesticide fate modeling is more advantageous for herbicides such as 2,4-D, whose sorption to soil is weak and influenced by subtle changes in soil properties, than for herbicides such as glyphosate that are strongly bound to soil regardless of soil properties.  相似文献   

13.
Abstract: Identifying relationships between landscape hydrogeological setting, riparian hydrological functioning and riparian zone sensitivity to climate and water quality changes is critical in order to best use riparian zones as best management practices in the future. In this study, we investigate water table dynamics, water flow path and the relative importance of precipitation, deep ground water (DG) and seep water as sources of water to a riparian zone in a deeply incised glacial till valley of the Midwest. Data indicate that water table fluctuations are strongly influenced by soil texture and to a lesser extent by upland sediment stratigraphy producing seeps near the slope bottom. The occurrence of till in the upland and at 1.7‐2 m in the riparian zone contributes to maintaining flow parallel to the ground surface at this site. Lateral ground‐water fluxes at this site with a steep topography in the upland (16%) and loam soil near the slope bottom are small (<10 l/d/m stream length) and intermittent. A shift in flow path from a lateral direction to a down valley direction is observed in the summer despite the steep concave topography and the occurrence of seeps at the slope bottom. Principal component and discriminant analysis indicate that riparian water is most similar to seep water throughout the year and that DG originating from imbedded sand and gravel layers in the lower till unit is not a major source of water to riparian zones in this setting. Water quality data and the dependence of the riparian zone for recharge on seep water suggest that sites in this setting may be highly sensitive to changes in precipitation and water quality in the upland in the future. A conceptual framework describing the hydrological functioning of riparian zones on this setting is presented to generalize the finding of this study.  相似文献   

14.
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.  相似文献   

15.
Knowledge of how polyacrylamide (PAM) penetrates and distributes in a soil profile after application in irrigation water is important for understanding PAM conditioning depth and evaluating its environmental effects. Little is known, however, about PAM distribution in soil because of the difficulty in quantifying PAM content in natural soils. By using a recently modified substrate-borne PAM quantification method, PAM distribution in columns of organic matter-removed soils was determined. Results showed that penetration of PAM into the soil was affected by salt level of irrigation water, soil texture, initial soil water content, water application method, and other factors. Polyacrylamide penetration depth was about one-eighth to one-half of the water penetration depth, with a particularly high PAM retention in the top few centimeters of the soil. Under different experimental conditions, the PAM retained in the top 0 to 2 cm of soil ranged from 16 to 95% of the total applied amount. More favorable solution-soil contact conditions, longer solution-soil contact time, and lower initial soil moisture caused much more PAM retention in the top few centimeters of the soil. High sorptive affinity of PAM on soil is the main reason for its low penetration into the soil. Although these results were not obtained from natural soils, they are still helpful in improving our understanding of PAM transport behavior in soils.  相似文献   

16.
ABSTRACT: Variable Source Areas (VSAs) are zones with water saturated soils in forested wetlands fringing streams and creeks. Runoff from these areas is generated by saturation excess after a shallow water table rises and inundates the ground surface. In humid regions, like Florida and the Southeast, VSAs are believed to produce most of the runoff in shallow water table environments. Modeling the spatial extent and temporal fluctuation of a VSA is difficult because the formation of a VSA depends on a number of hydrological and morphological factors like rainfall intensity, soil texture, water table depth, and topographic attributes of the terrain. In this paper, we couple a digital elevation model with a two‐dimensional variable saturation model to illustrate the formation of a VSA at the hillside scale. The topography derived from the digital elevation model forms the upper domain geometry for the two‐dimensional finite element simulations of variable saturated flow. The objectives are: (1) to model the spatial and dynamic fluctuation of a VSA, and (2) to understand the roles of rainfall variability and terrain attributes on the formation of a VSA. Results show that hillsides with shallow water table depths, low saturated hydraulic conductivity, mild slopes, and concave slope curvature were more susceptible to runoff from a variable source. Runoff from a variable source showed little sensitivity to rainfall intensity. In general, landscapes with steep slopes generated a small VSA and a seepage face that vanished rapidly with time. In contrast, flat terrains are more amenable to VSA and retain ground surface inundation for longer periods of time.  相似文献   

17.
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff.  相似文献   

18.
Reducing the delivery of phosphorus (P) from land-applied manure to surface water is a priority in many watersheds. Manure application rate can be controlled to manage the risk of water quality degradation. The objective of this study was to evaluate how application rate of liquid swine manure affects the transport of sediment and P in runoff. Liquid swine manure was land-applied and incorporated annually in the fall to runoff plots near Morris, Minnesota. Manure application rates were 0, 0.5, 1, and 2 times the rate recommended to supply P for a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Runoff volume, sediment, and P transport from snowmelt and rainfall were monitored for 3 yr. When manure was applied at the highest rate, runoff volume and sediment loss were less than the control plots without manure. Reductions in runoff volume and soil loss were not observed for spring runoff when frozen soil conditions controlled infiltration rates. The reduced runoff and sediment loss from manure amended soils compensated for addition of P, resulting in similar runoff losses of total P among manure application rates. However, losses of dissolved P increased with increasing manure application rate for runoff during the spring thaw period. Evaluation of water quality risks from fall-applied manure should contrast the potential P losses in snowmelt runoff with the potential that incorporated manure may reduce runoff and soil loss during the summer.  相似文献   

19.
The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.  相似文献   

20.
Perchlorate (ClO4-) contamination of ground water and surface water is a widespread problem, particularly in the western United States. This study examined the effect of biodegradation on perchlorate fate and transport in soils. Solute transport experiments were conducted on two surface soils. Pulses of solution containing perchlorate and Br- were applied to saturated soil columns at steady state water flow. Perchlorate behaved like a nonreactive tracer in Columbia loam (coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvent) but was degraded in Yolo loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent). Batch experiments demonstrated that perchlorate removal from solution in Yolo loam was caused by biodegradation. Other batch experiments with Yolo loam surface and subsurface soils, Columbia loam surface soil, and dredge tailings demonstrated that perchlorate biodegradation required anaerobic conditions, an adequate carbon source, and an active perchlorate-degrading microbial population. The sequential reduction of perchlorate and NO3- by an indigenous soil microbial community in Yolo loam batch systems was also studied. Nitrate reduction occurred much sooner than perchlorate reduction in soils that had not been previously exposed to perchlorate, but NO3- and perchlorate were simultaneously reduced in soils previously exposed to perchlorate. The results of this study have implications for in situ remediation schemes and for agricultural soils that have been contaminated by perchlorate-tainted irrigation water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号