首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Welker, Andrea L., James D. Barbis, and Patrick A. Jeffers, 2012. A Side‐by‐Side Comparison of Pervious Concrete and Porous Asphalt. Journal of the American Water Resources Association (JAWRA) 48(4): 809‐819. DOI: 10.1111/j.1752‐1688.2012.00654.x Abstract: This article compares the performance of two permeable pavements, pervious concrete and porous asphalt, that were installed side‐by‐side in fall 2007. Because the pavements are located directly adjacent to one another, they experience the same vehicle loads, precipitation, and pollution loads. These permeable pavements are part of an infiltration stormwater control measure (SCM). This article focuses on the comparison of water quality parameters, maintenance and durability, and user perception. Eleven different water quality parameters were analyzed at this site for 19 different storm events over a one year period: pH, conductivity, total suspended solids, chlorides, total nitrogen, total phosphorus, total dissolved copper, total dissolved lead, total dissolved cadmium, total dissolved chromium, and total dissolved zinc. Results from the two pavement types were compared using the Mann–Whitney U‐test. The only parameter that was found to be statistically different between the two pavements was pH. Periodic inspection of the two pavement types indicated that after two years of use both pavements were wearing well. However, there was some evidence of clogging of both pavements and some evidence of surface wear. A survey of users of the lot indicated that the perception of these permeable pavements was favorable.  相似文献   

2.
A comprehensive life cycle assessment of asphalt pavements was conducted including hot mix asphalt (HMA), warm mix asphalt (WMA) with the addition of synthetic zeolites, and asphalt mixes with reclaimed asphalt pavement (RAP). The environmental impacts associated with energy consumption and air emissions were assessed, as well as other environmental impacts resulting from the extraction and processing of minerals, binders and chemical additives; asphalt production; transportation of materials; asphalt paving; road traffic on the pavement; land use; dismantling of the pavement at the end-of-life and its landfill disposal or recycling. Monte Carlo simulations were also conducted to take into account the variability of critical input parameters. Taking into account the entire life cycle, the impacts of zeolite-based WMA pavements were almost equal to the impacts of HMA pavements with the same RAP content. The reduction in the impacts of WMA resulting from the lowering of the manufacturing temperature was offset by the greater impacts of the materials used, especially the impacts of the synthetic zeolites. Moreover, by comparing asphalt mixes with different RAP contents, it was shown that the impacts of asphalt mixes were significantly reduced when RAP was added. All endpoint impacts as well as climate change, fossil depletion and total cumulative energy demand were decreased by 13–14% by adding 15% RAP. A key advantage of WMA is the potentially greater use of RAP. Thus, the decrease in the impacts achieved by adding large amounts of RAP to WMA could turn these asphalt mixes into a good alternative to HMA in environmental terms.  相似文献   

3.
This research investigated the possibility of using recycled asphalt concrete as surface course in airport pavement. The basic properties of recycled asphalt binder after short- and long-term aging were firstly tested and compared with those of the virgin asphalt. Then, a series of laboratory tests were performed to evaluate the performance of recycled asphalt concrete (containing 40% and 70% RAP), in which the HMA mixture without RAP was used as a control. Furthermore, an experimental pavement consisting of three sections (corresponding to 0%, 40% and 70% RAP content) was constructed to verify the laboratory test results. These results indicated that the recycled asphalt could achieve the similar properties against long-term aging as virgin asphalt. Recycled asphalt concrete containing 40% RAP could be used as surface course in airport pavement as it exhibited similar performance as control mixture both from the laboratory and experimental pavement test results. On the contrary, recycled asphalt concrete containing 70% RAP was not recommended as its fatigue property was much poorer compared with that of virgin asphalt mixture.  相似文献   

4.
A city's spatial footprint is covered by extensive impervious building roofs and paved surfaces, which contribute to greater storm-water runoff, more surface pollutants, and less carbon sequestration, hence, worse ecosystem services. This research conducts an empirical study on the ecological and economic impacts of a citywide adoption of green roofs and permeable pavements in Corvallis, OR. The effects on ecosystem services of using green roofs and pervious pavements for a low impact development are modelled using Integrated Value of Ecosystem Services Trade-offs and compared to those from the City's current conventional development without green roofs and pervious pavements. The differences are analysed for ecological impact by storm-water yield, storm-water purification, and carbon sequestration and economic impact by a cost-benefit comparison. The results indicate that low impact development, especially intensive green roofs on commercial/industrial buildings and permeable pavements for parking lots, plays a significant role, even with a higher initial implementation cost, for long-term urban sustainability.  相似文献   

5.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

6.
With the pavement industry adopting sustainable practices to align itself with the global notion of habitable environments, there has been growing use of life-cycle assessment (LCA). A hybrid LCA was used to analyze the environmental footprint of using a reclaimed asphalt pavement (RAP) content in asphalt binder mixtures. The analysis took into consideration the material, construction, and maintenance and rehabilitation phases of the pavement life cycle. The results showed significant reductions in energy consumption and greenhouse gas (GHG) emissions with an increase in RAP content. The contribution of the construction phase to the GHGs and energy consumption throughout pavement life cycle is minimal. Feedstock energy, though not consequential when comparing asphalt mixtures only, has a significant impact on total energy. Based on LCA analysis performed for various performance scenarios, breakeven performance levels were identified for mixtures with RAP. The study highlighted the importance of achieving equivalent field performance for mixtures with RAP and virgin mixtures.  相似文献   

7.
To avoid eutrophication of receiving waters, effective methods to remove P in urban and agricultural runoff are needed. Crushed concrete may be an effective filter material to remove dissolved and particulate P. Five types of crushed concrete were tested in the laboratory to evaluate the retention capacity of dissolved P. All types removed P very effectively (5.1-19.6 g P kg(-1) concrete), while the possible release of bound P varied between 0.4 and 4.6%. The retention rate was positively related to a decreasing concrete grain size due to an increasing surface area for binding. The P retention was also related to a marked increase in pH (up to pH 12), and the highest retention was observed when pH was high. Under these circumstances, column experiments showed outlet P concentrations <0.0075 mg P L(-1). Furthermore, experiments revealed that release of heavy metals is of no importance for the treated water. We demonstrate that crushed concrete can be an effective tool to remove P in urban and agricultural runoff as filter material in sedimentation/infiltration ponds provided that pH in the treated water is neutralized or the water is diluted before outlet to avoid undesired effects caused by the high pH.  相似文献   

8.
The use of recycled waste glasses in Portland cement and concrete has attracted a lot of interest worldwide due to the increased disposal costs and environmental concerns. Being amorphous and containing relatively large quantities of silicon and calcium, glass is, in theory, pozzolanic or even cementitious in nature when it is finely ground. Thus, it can be used as a cement replacement in Portland cement concrete. The use of crushed glasses as aggregates for Portland cement concrete does have some negative effect on properties of the concrete; however, practicle applicability can still be produced even using 100% crushed glass as aggregates. The main concerns for the use of crushed glasses as aggregates for Portland cement concrete is the expansion and cracking caused by the glass aggregates. This paper summarizes the progresses and points out the directions for the proper uses of waste glasses in Portland cement and concrete.  相似文献   

9.
In Tanzania, construction and demolition (C&D) waste is not recycled and knowledge on how it can be recycled especially into valuable products like building materials are still limited. This study aimed at investigating the possibility of recycling the C&D waste (mainly cementitious rubble) into building material in Tanzania. The building materials produced from C&D waste was concrete blocks. The concrete blocks were required to have a load bearing capacity that meets the building material standards and specifications. Eight C&D waste samples were collected from C&D building sites, transported to the recycling site, crushed, and screened (sieved) to get the required recycled aggregates. Natural aggregates were also used as control. The recycled aggregates were tested in the laboratory following the standard methods as specified in Tanzanian standards. The physical, mechanical and chemical characteristics were determined. The physical and mechanical results showed that recycled aggregates were weaker than natural aggregates. However, chemically they were close to natural aggregates and therefore suitable for use in new concrete block production. In the production process, each experiment utilized 100% recycled aggregates for both fine and coarse portions to replace natural aggregates. The Fuller's maximum density theory was used to determine the mix proportions of materials in which a method that specifies concrete mix by system of proportion or ratio was used. The concrete blocks production processes included batching, mixing (that was done manually to get homogeneous material), compacting and moulding by hand machine and curing in water. After 28 days of curing, the concrete blocks were tested in the laboratory on compressive strength, water absorption ratio and density. The results showed that the blocks produced with 100% recycled aggregates were weaker than those with natural aggregates. However, the results also showed that there is a possibility of recycling the C&D waste into building material because 85% of the tested concrete block specimens from recycled aggregates achieved a compressive strength of 7 N/mm2, which is defined as the minimum required load bearing capacity in Tanzania. Therefore, the C&D waste could be a potential resource for building material production for sustainable construction in Tanzania rather than discarding it. Further work should focus on the economic feasibility of production of concrete blocks with recycled aggregates in Tanzania.  相似文献   

10.
Field investigation of high-volume fly ash (HVFA) concrete in pavement construction was carried out. Test results performed on cores drilled from pavement after 270 days of concrete age showed that use of HVFA results in production of pavement concrete with improvements in: strength; moisture barrier qualities; and abrasive resistance characteristics. These improvements are brought about by the pozzolanic reaction of fly ash with the hydrates of cement that favorably changes the microstructure and interfacial transition zone in the resulting concrete.Use of high volume of fly ash in pavement concrete as partial replacement for cement is estimated to produce major energy and environmental gains and is a practice that is aimed at producing durable and sustainable concrete-based infrastructure. The use of HVFA concrete can significantly economize the construction of concrete pavements and improve the service life of transportation infrastructure.  相似文献   

11.
A holistic evaluation of the feasibility of producing 100% recycled mixtures is presented. Eleven technologies readily available for producing 100% Reclaimed Asphalt Pavement (RAP) hot asphalt mixtures are described in the article and the complementary video (http://youtu.be/coj-e5mhHEQ). The recorded performance of 100% RAP mixtures is analyzed along with identification of typical high RAP distresses. Recommended mix design procedures and the best RAP management strategies are described. A cradle-to-gate analysis of environmental effects indicated 18 kg or 35% CO2eq savings per t of produced 100% RAP asphalt mixture compared to virgin mix, while cost analysis showed at least 50% savings in material related expenses.  相似文献   

12.
ABSTRACT: A “user-friendly” computer program has been developed for application in personal computers for preliminary design, evaluation, and cost effectiveness analysis of various best management practice (BMP) measures to control stormwater quantity and quality. The algorithms utilize the SCS TR-55 method for calculating runoff hydrographs for a single storm event and a first order pollutant washoff equation to generate pollutographs. Sensitivity analyses based on different policy scenarios is performed on a hypothetical watershed for the purpose of illustration. Three types of BMP measures, namely detention ponds (dry, wet, and extended wet ponds), infiltration trenches, and porous pavements are considered. It is found that the extended wet ponds have the best cost effective performance of the measures evaluated.  相似文献   

13.
ABSTRACT The effect of hydrologic and chemical processes on salinization of stored waters was determined for two small floodwater-retarding structures located in western Oklahoma. One structure, already designed to accommodate a large influx of sediment, was further overdesigned hydrologically by upstream diversion of approximately one-half the inflow. Over a 2-year period, the total salinity of stored waters increased approximately 22 times and the stored water volume decreased to 1/33 its initial volume in the overdesigned structure, while both volume and salinity of stored waters remained comparatively stable in the other structure. The lack of sufficient dilution by better quality surface runoff and the increased residence time of water in the impoundment apparently caused most of the salinity increase. The bulk of the salt load entering the over-designed structure, to be concentrated later by evaporation, was associated with base rather than storm inflow. After base inflow ceased, substantial losses of salt load and stored water occurred concurrently. The loss was not adequately explained by chemical precipitation in association with evaporation. Seepage and evaporation-associated variables appeared to account for much of the hydrologically unexplained loss of stored waters.  相似文献   

14.
The process of producing cement products from solid waste can increase the level of pollutants in the cement products. Therefore, it is very important to establish a pollution control standard for cement products to protect the environment and human health. This paper presents acceptance limits for the availability of heavy metals in cement products which have been produced from solid wastes and explains how the limits have been calculated. The approach and method used to formulate these criteria were based on EN 12920. The typical exposure scenarios used in this paper involve concrete being used for drinking water supply pipelines and concrete pavements and are based on an analysis of typical applications of cement in China, and the potential for contact with water. The parameters of a tank test which was based on NEN 7375 were set in accordance with the environmental conditions of typical scenarios in China. Mechanisms controlling the release of heavy metals in concrete and a model for that release were obtained using the leaching test. Finally, based on acceptance criteria for drinking water and groundwater quality in China, limit values for the availability of heavy metals in concrete were calculated.  相似文献   

15.
Abstract: A pervious concrete infiltration basin was installed on the campus of Villanova University in August 2002. A study was undertaken to determine what contaminants, if any, were introduced to the soils underlying the site as a result of this best management practice (BMP). The average infiltration rate at the site is approximately 10?4 cm/s. The drainage area (5,208 m2) consists of grassy surfaces (36%), standard concrete/asphalt (30%), and roof surfaces (30%) that directly connect to the infiltration beds via downspouts and storm sewers. Composite samples of infiltrated stormwater were collected from the vadose zone using soil moisture suction devices. Discrete samples were collected from a port within an infiltration bed and a downspout from a roof surface. Samples from 17 storms were analyzed for pH, conductivity, and concentrations of suspended solids, dissolved solids, chloride, copper, and total nitrogen. Copper and chloride were the two constituents of concern at this site. Copper was introduced to the system from the roof, while chloride was introduced from deicing practices. Copper was not found in porewater beneath 0.3 m and the chloride was not significant enough to impact the ground water. This research indicates that with proper siting, an infiltration BMP will not adversely impact the ground water.  相似文献   

16.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

17.
Leachate metal pollutant concentrations produced from different asphalt and concrete pavement surfacing materials were measured under controlled laboratory conditions. The results showed that, in general, the concentrations of most metal pollutants were below the reporting limits. However, dissolved chromium was detected in leachate from concrete (but not asphalt) specimens and more strongly in the early-time leachate samples. As the leaching continued, the concentration of Cr decreased to below or close to the reporting limit. The source of the chromium in concrete pavement was found to be cement. The concentration of total Cr produced from leachate of different cement coming from different sources that was purchased from retail distributors ranged from 124 to 641 μg/L. This result indicates that the potential leachability of dissolved Cr from concrete pavement materials can be reduced through source control. The results also showed that the leachability of dissolved Cr in hardened pavement materials was substantially reduced. For example, the concentration of dissolved Cr measured in actual highway runoff was found to be much lower than the Cr concentration produced from leachate of both open and dense graded concrete pavement specimens under controlled laboratory study. It was concluded that pavement materials are not the source of pollutants of concern in roadway runoff; rather most pollutants in roadway surface runoff are generated from other road-use or land-use sources, or from (wet or dry) atmospheric deposition.  相似文献   

18.
Few studies exist on how chloride from chloride‐based deicers is transported in infiltration‐based stormwater control measures. In 2009, the U.S. Environmental Protection Agency (USEPA) constructed a 0.4 ha parking lot in Edison, New Jersey, that was surfaced with permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). Each surface type has four equally sized, lined sections that direct all infiltrate to separate 5.7 m3 collection tanks. The USEPA acute criterion for aquatic life (860 mg/l) was exceeded in events immediately following a snow event. Concentrations of the infiltrate exceeded the detection limit (5 mg/l) year round but did not exceed the USEPA chronic toxicity (230 mg/l) after April. The chloride concentration decreased with cumulative rainfall since previous snow event, and a power regression described this relationship. In the power regression, the coefficient (b) described the initial concentration following a snow event, and the exponent (m) described the rate in which chloride was flushed through the system with infiltrating water. PC had the largest coefficient (5,664) and largest absolute exponent (?0.92), followed closely by PICP (= 4,943 and = ?0.87), and distantly by PA (= 2,907 and = ?0.67). The differences in release rate were proportional to the measured surface infiltration rates of 4,000; 2,400; and 200 cm/h for PC, PICP, and PA, respectively. These results will assist those who manage or regulate stormwater where receiving waters are chloride impaired.  相似文献   

19.
分析了沥青混凝土搅拌设备的构成以及生产沥青混凝土的工艺及烟尘特点;通过应用工程实例,指出袋式除尘器是沥青混凝土搅拌设备最理想的除尘系统之一。  相似文献   

20.
Abstract: Runoff from parking lots during summer storms injects surges of hot water into receiving water bodies. We present temperature data collected near urban storm sewer outfalls in Blacksburg, Virginia, using arrays of sensors in a stream and a stormwater pond. Surges occurred roughly a dozen times per month, ranging up to 8.1°C with average duration 2 h in the stream and up to 11.2°C with average duration 7 h in the pond. Surges were larger in the pond due to a larger contributing watershed, no dilution by upstream water, and cool background temperatures near the outfall. Surges began abruptly, warming at rates averaging 0.2°C/min for periods of 5‐20 min. Surges dissipated as they propagated into the water bodies, travelling further in the stream (>19 m) than the pond (~10 m) consistent with greater advection in the stream. Surges were largest and most frequent in the afternoon but occurred at all times of day and night. Stream surges exhibited two phases: an early high‐temperature low‐volume input from the storm sewer and a later low‐temperature high‐volume input from upstream. Surges at the pond did not exhibit two phases, consistent with inputs only from storm sewers. Surges are likely common in urban areas, and may cumulatively have consequences for aquatic organisms, biogeochemical process rates, and even human health. Such effects may be compounded by urban heat islands and climate change, so prevention or mitigation should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号